|
| 1 | +""" |
| 2 | +Benchmark constant folding over a module of integer addition of constants using |
| 3 | +xDSL's pattern rewriting machinery. The workload module is generated by the |
| 4 | +``get_constant_folding_module()`` function, which is then transformed by the |
| 5 | +``xdsl.transforms.test_constant_folding.TestConstantFoldingPass`` xDSL |
| 6 | +transformation pass. |
| 7 | +
|
| 8 | +xDSL is a Python-native compiler framework built around SSA-based intermediate |
| 9 | +representations. It re-implements many of MLIR's data structures and methods in |
| 10 | +Python. This benchmark exercises the simple pattern rewriting transformation of |
| 11 | +constant folding. This is a fair proxy for pattern rewriting transformations in |
| 12 | +general, which are a major component of MLIR-like compilers in lowering passes. |
| 13 | +
|
| 14 | +Pattern rewriting in both xDSL and MLIR is a pointer-chasing, unstructured |
| 15 | +workload, which makes it hard to optimise ahead-of-time. This diminishes the |
| 16 | +traditional performance advantage of ahead-of-time compiled languages such as |
| 17 | +C++ over dynamic languages such as Python -- making it an interesting benchmark. |
| 18 | +More information about the design and impact of this benchmark can be found in |
| 19 | +the Master's thesis ``Performance and Dynamism in User-extensible Compiler |
| 20 | +Infrastructures'', which is `available on GitHub |
| 21 | +<https://github.com/EdmundGoodman/masters-project>`_. |
| 22 | +""" |
| 23 | + |
| 24 | +import random |
| 25 | + |
| 26 | +import pyperf |
| 27 | + |
| 28 | +from xdsl.context import Context |
| 29 | +from xdsl.dialects.arith import AddiOp, Arith, ConstantOp |
| 30 | +from xdsl.dialects.builtin import ( |
| 31 | + Builtin, |
| 32 | + IntegerAttr, |
| 33 | + ModuleOp, |
| 34 | + i32, |
| 35 | +) |
| 36 | +from xdsl.dialects.test import TestOp |
| 37 | +from xdsl.ir import Operation |
| 38 | +from xdsl.transforms.test_constant_folding import TestConstantFoldingPass |
| 39 | + |
| 40 | + |
| 41 | +RANDOM_SEED = 0 |
| 42 | + |
| 43 | + |
| 44 | +def get_constant_folding_module(size: int = 100) -> ModuleOp: |
| 45 | + """Generate an integer addition constant folding workload of a given size. |
| 46 | +
|
| 47 | + The output of running the command |
| 48 | + `print(WorkloadBuilder().constant_folding_module(size=5))` is shown |
| 49 | + below: |
| 50 | +
|
| 51 | + ```mlir |
| 52 | + "builtin.module"() ({ |
| 53 | + %0 = "arith.constant"() {"value" = 865 : i32} : () -> i32 |
| 54 | + %1 = "arith.constant"() {"value" = 395 : i32} : () -> i32 |
| 55 | + %2 = "arith.addi"(%1, %0) : (i32, i32) -> i32 |
| 56 | + %3 = "arith.constant"() {"value" = 777 : i32} : () -> i32 |
| 57 | + %4 = "arith.addi"(%3, %2) : (i32, i32) -> i32 |
| 58 | + %5 = "arith.constant"() {"value" = 912 : i32} : () -> i32 |
| 59 | + "test.op"(%4) : (i32) -> () |
| 60 | + }) : () -> () |
| 61 | + ``` |
| 62 | + """ |
| 63 | + assert size >= 0 |
| 64 | + random.seed(RANDOM_SEED) |
| 65 | + ops: list[Operation] = [] |
| 66 | + ops.append(ConstantOp(IntegerAttr(random.randint(1, 1000), i32))) |
| 67 | + for i in range(1, size + 1): |
| 68 | + if i % 2 == 0: |
| 69 | + ops.append(AddiOp(ops[i - 1], ops[i - 2])) |
| 70 | + else: |
| 71 | + ops.append(ConstantOp(IntegerAttr(random.randint(1, 1000), i32))) |
| 72 | + ops.append(TestOp([ops[(size // 2) * 2]])) |
| 73 | + return ModuleOp(ops) |
| 74 | + |
| 75 | + |
| 76 | +def bench_xdsl_constant_folding(loops: int, size: int) -> float: |
| 77 | + """Benchmark constant folding integer additions with xDSL.""" |
| 78 | + ctx = Context(allow_unregistered=True) |
| 79 | + ctx.load_dialect(Arith) |
| 80 | + ctx.load_dialect(Builtin) |
| 81 | + constant_folding_pass = TestConstantFoldingPass() |
| 82 | + constant_folding_workload = get_constant_folding_module(size) |
| 83 | + |
| 84 | + range_it = range(loops) |
| 85 | + t0 = pyperf.perf_counter() |
| 86 | + for _ in range_it: |
| 87 | + constant_folding_workload_mutable = constant_folding_workload.clone() |
| 88 | + constant_folding_pass.apply(ctx, constant_folding_workload_mutable) |
| 89 | + return pyperf.perf_counter() - t0 |
| 90 | + |
| 91 | + |
| 92 | +def add_cmdline_args(cmd, args): |
| 93 | + """Add command line arguments to a pyperf runner""" |
| 94 | + cmd.extend(("--size", str(args.size))) |
| 95 | + |
| 96 | + |
| 97 | +if __name__ == "__main__": |
| 98 | + runner = pyperf.Runner(add_cmdline_args=add_cmdline_args) |
| 99 | + runner.metadata["description"] = "Benchmark xDSL constant folding integer addition" |
| 100 | + runner.argparser.add_argument( |
| 101 | + "--size", |
| 102 | + type=int, |
| 103 | + default=1000, |
| 104 | + help="Number of integer additions (default: 1000)", |
| 105 | + ) |
| 106 | + args = runner.parse_args() |
| 107 | + runner.bench_time_func("xdsl_constant_fold", bench_xdsl_constant_folding, args.size) |
0 commit comments