

PYTHON
PROGRAMMING

BEGINNERS

In This Book You Will Learn Explanation with Diagram and
Readymade Solution With Step By Step Explanation

AMIT K

Contents
Beginners Guide to Learn Python Programming Step by Step

Introduction
Chapter 1 : Basics

1 Python Introduction
2 Python Variables

Chapter 2 : Data Types
1 Python boolean
2 Python String
3 Python Number

4 Python List
5 Python Tuple

6 Python Dictionary
Chapter 3 : Operators

1 Python Arithmetic Operators

2 Python Bitwise Operators
3 Python Comparison Operators

4 Python Logical Operators
5 Python Ternary Operators

Chapter 4 : Statements
1 Python if
2 Python while
3 Python for loop
4 Python pass
5 Python break
6 Python continue

Chapter 5 : Functions
1 Python function
2 Python Function Recursion

Chapter 6 : Object Oriented
1 Python Modules
2 Python class
3 Python class Inheritance
4 Python Abstract Base Classes
5 Python Operator Overloading

Chapter 7 : Advanced
1 Python File
2 Python Text File

3 Python Exceptions
4 Python Testing

Introduction
Learning Python Programming step by step.
Python's popularity stems from its simplicity, versatility, and robustness.
Here are some of its main features:

Readable and Simple Syntax: Python's syntax is designed to
be easy to read and write, making it accessible to beginners
and experienced programmers alike. It emphasizes readability,
reducing the cost of program maintenance and development.
Extensive Standard Library: Python comes with a large
standard library that provides modules and packages for
various tasks such as string manipulation, file I/O, networking,
and more. This extensive library reduces the need for
additional third-party modules and simplifies development.
Dynamic Typing and Dynamic Binding: Python is
dynamically typed, meaning you don't need to declare the type
of variables. This allows for more flexibility and faster
development cycles. Additionally, Python features dynamic
binding, which means that variable names are bound to objects
at runtime, providing more flexibility in code structure.

Chapter 1 :
Python Introduction

1 Introduction
Python's popularity stems from its simplicity, versatility, and robustness.
Here are some of its main features:

Readable and Simple Syntax: Python's syntax is designed to
be easy to read and write, making it accessible to beginners
and experienced programmers alike. It emphasizes readability,
reducing the cost of program maintenance and development.

Extensive Standard Library: Python comes with a large
standard library that provides modules and packages for
various tasks such as string manipulation, file I/O, networking,
and more. This extensive library reduces the need for
additional third-party modules and simplifies development.
Dynamic Typing and Dynamic Binding: Python is
dynamically typed, meaning you don't need to declare the type
of variables. This allows for more flexibility and faster
development cycles. Additionally, Python features dynamic
binding, which means that variable names are bound to objects
at runtime, providing more flexibility in code structure.

Cross-platform Compatibility: Python is available for all
major operating systems (Windows, macOS, Linux) and is
portable across platforms. This allows developers to write code
once and run it anywhere, making it highly versatile.
High-level Language: Python abstracts many low-level
details like memory management and provides high-level data
types and constructs, making it easier to focus on solving
problems rather than dealing with implementation details.
Support for Multiple Programming Paradigms: Python
supports multiple programming paradigms, including
procedural, object-oriented, and functional programming. This
flexibility allows developers to choose the most appropriate
approach for their specific needs.
Large and Active Community: Python has a vast and active
community of developers who contribute to its growth and
development. This community support means there are
abundant resources, libraries, frameworks, and tools available
for Python development.
Scalability and Performance: While Python may not be as
fast as compiled languages like C or C++, it offers good
performance for most applications. Additionally, Python can
be easily integrated with high-performance languages for
performance-critical tasks, and there are various optimization
techniques available to improve performance.

Open Source: Python is open source, meaning its source code
is freely available and can be modified and redistributed by
anyone. This fosters innovation and collaboration within the
Python community.

These features collectively contribute to Python's popularity and
widespread adoption in various domains such as web development, data
science, machine learning, artificial intelligence, scientific computing,
automation, and more.

Compiler Install
Python is an interpreted language, so it doesn't require compilation in the
traditional sense. However, you do need to install the Python interpreter on
your system to run Python code. Here's how you can download and install
Python:

Visit the Python website: Go to the official Python website at
https://www.python.org/.
Download Python: On the homepage, you'll see a prominent
button for downloading Python. Click on it to navigate to the
download page.

Choose the installer: You'll be presented with different
versions of Python. Typically, you'll want to download the
latest stable version for your operating system (Windows,
macOS, or Linux). Python distributions are available for both
32-bit and 64-bit systems.
Download the installer: Click on the download link for the
installer that matches your operating system and architecture.
Run the installer: Once the installer is downloaded, run it by
double-clicking on the downloaded file.
Follow the installation wizard: The installation wizard will
guide you through the installation process. You can choose the
installation directory, customize the installation options if
needed, and install additional features like pip (Python's
package manager) and adding Python to the system PATH
(recommended).

Complete the installation: Once you've configured the
installation options, proceed with the installation. The installer
will copy the necessary files to your system and set up Python.
Verify the installation: After the installation is complete, you
can verify that Python is installed correctly by opening a
command prompt (Windows) or terminal (macOS/Linux) and
typing python --version or python3 --version. This should
display the installed Python version.

Hello world
Writing "Hello, World!" to the console in Python is straightforward. Here's
the code:
print("Hello, World!")

You can write this code in a text editor or an integrated development
environment (IDE) such as Visual Studio Code, PyCharm, or IDLE. Save
the file with a .py extension, such as hello_world.py.
To run the Python code and see the output in the console:
1 Open a command prompt (Windows) or terminal

(macOS/Linux).
2 Navigate to the directory where your Python file

(hello_world.py) is saved using the cd command.
3 Once you're in the correct directory, type python

hello_world.py and press Enter (or python3 hello_world.py
on some systems). This will execute the Python script, and
you should see "Hello, World!" printed to the console.

Comments

In Python, you can write comments to document your code or provide
explanations. Comments are ignored by the Python interpreter and are
meant for human readers. Here's how you can write comments in Python:
Single-line comments:
This is a single-line comment
print("Hello, World!") # This is also a single-line comment

Multi-line comments (technically, multi-line strings that are not assigned to
a variable):
"""
This is a multi-line comment.
You can write multiple lines of text within triple quotes.
This is often used as a docstring for documenting functions or modules.
"""
print("Hello, World!")

Alternatively, you can use the # character to comment out multiple lines:
This is a comment
This is another comment
print("Hello, World!")

It's a common convention in Python to write clear and concise comments to
explain your code, making it easier for others (and your future self) to
understand the purpose and functionality of the code.

2 Python Variables
Introduction
In Python, variables are used to store data values. A variable is a name that
refers to a value stored in memory. Unlike some other programming
languages, Python is dynamically typed, meaning you don't need to declare
the type of a variable before assigning a value to it. Here's how you can use
variables in Python:
1 Variable Assignment: You can assign a value to a variable using the =
operator.

x = 10
name = "Alice"

2 Variable Naming Rules:

Variable names must start with a letter (a-z, A-Z) or an
underscore _.
Variable names can contain letters, digits (0-9), and
underscores _.
Variable names are case-sensitive (name and Name are
different variables).
Python keywords (e.g., if, for, while, def, etc.) cannot be
used as variable names.

3 Data Types: Python variables can hold values of different data types,
including:

Integer (int): Whole numbers, e.g., 10, -5, 1000.
Float (float): Floating-point numbers, e.g., 3.14, 2.718.
String (str): Sequence of characters, e.g., "Hello", 'Python'.
Boolean (bool): Represents True or False.
List (list), Tuple (tuple), Dictionary (dict), Set (set), etc.

age = 25 # integer
pi = 3.14 # float
name = "Alice" # string
is_student = True # boolean

4 Variable Reassignment: You can change the value of a
variable by assigning a new value to it.

x = 5
x = x + 1 # x now holds the value 6

5 Variable Scope: Variables have a scope, which defines where they can
be accessed from. Variables declared inside a function have local scope,

meaning they are only accessible within that function. Variables declared
outside of any function have global scope and can be accessed from
anywhere in the code.
x = 10 # global variable

def my_function():
y = 20 # local variable
print(x) # x can be accessed here
print(y) # y can be accessed here

my_function()
print(x) # x can be accessed here
print(y) # Error: y is not defined

Variables are fundamental to programming in Python, as they allow you to
store and manipulate data within your programs.

Constants
In Python, constants are typically created by defining variables with
uppercase names and treating them as if they were constant, although
Python does not have built-in support for constant variables like some other
programming languages. Here's how you can create constants in Python:
MY_CONSTANT = 10
ANOTHER_CONSTANT = "Hello"

By convention, constants are usually written in uppercase to distinguish
them from regular variables. However, it's important to note that Python
doesn't enforce constants; you can still modify their values, but it's a
convention to treat them as immutable.
If you want to prevent accidental modification of a constant value, you can
use the readonly or dataclass module to create immutable objects. Here's an
example using readonly:
from readonly import readonly

@readonly
class Constants:

MY_CONSTANT = 10
ANOTHER_CONSTANT = "Hello"

Now you cannot modify the values of these constants:
Constants.MY_CONSTANT = 20 # This will raise an AttributeError

Chapter 2 :
Python Data Types

1 Python boolean

Introduction
Boolean values are a data type in Python that represent truth values. They
can only have one of two values: True or False. Boolean values are
commonly used in conditional statements, loops, and logical operations to
control the flow of the program or to represent the result of a comparison.
Here's how you can use Boolean values in Python:
1 Boolean Variables: You can assign Boolean values to

variables like any other data type.
is_student = True
has_passed_exam = False

2 Conditional Statements: Boolean values are often used in
conditional statements (if, elif, else) to execute different
blocks of code based on whether a condition is True or
False.

if is_student:
print("The person is a student.")

else:
print("The person is not a student.")

3 Logical Operators: Boolean values can be combined using
logical operators (and, or, not) to create compound
conditions.

age = 20
is_adult = age >= 18
is_teenager = age >= 13 and age <= 19

4 Loops: Boolean values are often used as loop conditions to
control the execution of the loop.

while is_student:
print("Still studying...")
Some condition to update is_student, otherwise, it may result in an infinite loop
is_student = False

5 Function Returns: Functions can return Boolean values to
indicate the success or failure of an operation or to indicate
a condition.

def is_even(number):
return number % 2 == 0

print(is_even(4)) # True
print(is_even(5)) # False

6 Built-in Functions: Python provides built-in functions like
bool() to convert other data types to Boolean values.

print(bool(0)) # False
print(bool(1)) # True
print(bool([])) # False (empty list)
print(bool([1])) # True (non-empty list)

boolean to int
In Python, you can convert a Boolean value to an integer using the int()
function. When you convert a Boolean value to an integer, True is
represented as 1 and False is represented as 0. Here's how you can do it:

Convert True to integer
boolean_value = True
integer_value = int(boolean_value)
print(integer_value) # Output: 1

Convert False to integer
boolean_value = False
integer_value = int(boolean_value)
print(integer_value) # Output: 0

boolean to string
In Python, you can convert a boolean value to a string using either the str()
function or by using string formatting methods. Here are a example:
Using str() function:
Convert True to string
boolean_value = True
string_value = str(boolean_value)
print(string_value) # Output: "True"

Convert False to string
boolean_value = False
string_value = str(boolean_value)
print(string_value) # Output: "False"

True False

In Python, True and False are the two boolean values that represent the truth
values. They are used to control the flow of the program, make decisions,
and perform logical operations. Here are some important notes on True and
False and how to use them in Python:
1 True and False Values:

True and False are reserved keywords in Python.
True represents the truth value true, while False represents
the truth value false.
These are the only two boolean values in Python.

2 Boolean Operations:

Boolean values are commonly used in logical operations
such as AND (and), OR (or), and NOT (not).
The and operator returns True if both operands are true,
otherwise it returns False.
The or operator returns True if at least one of the operands is
true, otherwise it returns False.
The not operator returns the opposite boolean value of its
operand.

3 Comparison Operators:

Comparison operators (==, !=, <, <=, >, >=) return boolean
values (True or False) based on the comparison result.
For example, x == y returns True if x is equal to y, otherwise
it returns False.

4 Control Structures:

Boolean values are extensively used in control structures
such as if, elif, else statements and loops (while, for).
These structures allow you to execute different blocks of
code based on conditions evaluated to True or False.

5 Truthiness and Falsiness:

In addition to True and False, other values in Python can be
evaluated as either true or false in a boolean context.
Values such as empty sequences (lists, tuples, strings, etc.),
0, and None are evaluated as False. Any non-zero number or
non-empty sequence is evaluated as True.

6 Return Values:

Functions can return boolean values to indicate the success
or failure of an operation or to represent a condition.
For example, a function that checks if a number is even
might return True or False based on the result of the check.

Understanding how to use True and False effectively is essential for writing
clear, concise, and efficient Python code. They enable you to express
conditions and logic in a way that is easy to understand and maintain.

2 Python String
Introduction
Creating a variable and assigning a string value to it in Python is
straightforward. Here's how you can do it:
Create a variable named 'my_string' and assign a string value to it
my_string = "Hello, World!"

Print the value of the variable
print(my_string)

In this example:

We create a variable named my_string.
We use the assignment operator = to assign the string "Hello,
World!" to the variable my_string.
We then print the value of my_string using the print() function.

You can assign any string value to a variable in Python, and the variable
will hold that value until it is changed or deleted.

Variables in String
In Python, you can use variables inside strings using string formatting
techniques. There are several ways to achieve this, including using the %
operator, the str.format() method, and f-strings (formatted string literals).
Here's how you can use variables inside strings using each method:
1 Using % Operator: You can use the % operator to insert

variables into strings. This method is older and less
recommended compared to newer methods like f-strings
and str.format().

name = "Alice"
age = 30
greeting = "Hello, %s! You are %d years old." % (name, age)
print(greeting)

2 Using str.format() Method: The str.format() method allows
you to format strings with placeholders {} that are replaced
with variable values.

name = "Alice"
age = 30
greeting = "Hello, {}! You are {} years old.".format(name, age)
print(greeting)

3 Using f-strings (Formatted String Literals): F-strings provide

a more concise and readable way to insert variables into
strings. You can directly include variables and expressions
within curly braces {} inside the string.

name = "Alice"
age = 30
greeting = f"Hello, {name}! You are {age} years old."
print(greeting)

All three methods achieve the same result, but f-strings are generally
preferred due to their simplicity and readability. They were introduced in
Python 3.6 and offer a more intuitive way to format strings with variables.

Escape
Escape sequences in Python strings are special characters that are preceded
by a backslash \. These sequences allow you to include characters in strings
that are difficult or impossible to type directly in source code. Here are
some commonly used escape sequences in Python:

1 \n: Newline character. It inserts a newline into the string.
print("Line 1\nLine 2")

Output:
Line 1
Line 2

2 \t: Tab character. It inserts a horizontal tab into the string.
print("Column 1\tColumn 2")

Output:
Column 1 Column 2

3 \r: Carriage return character. It moves the cursor to the
beginning of the line.

print("Hello\rWorld")

Output:
World

4 \\: Backslash character. It inserts a literal backslash into the
string.

print("This is a backslash: \\")

Output:
This is a backslash:
\

Quote
To include single quotes (') or double quotes (") inside a Python string, you
can use the opposite type of quote to delimit the string, or you can escape
the quote character using a backslash (\). Here's how you can do it:

1 Using Opposite Type of Quote: If you want to include single quotes
inside a string delimited by double quotes or vice versa, you can simply use
the opposite type of quote inside the string.
Using double quotes to delimit the string with single quotes inside
string_with_single_quotes = "He said, 'Hello'"
print(string_with_single_quotes)

Using single quotes to delimit the string with double quotes inside
string_with_double_quotes = 'She said, "Hi"'
print(string_with_double_quotes)

Output:
He said,
'Hello'

She said, "Hi"

2 Escaping Quote Characters: If you want to include the same
type of quote character inside a string, you can escape it
using a backslash (\).

Using single quotes with escaped single quote inside
string_with_escaped_single_quote = 'I\'m fine'
print(string_with_escaped_single_quote)

Using double quotes with escaped double quote inside
string_with_escaped_double_quote = "She said, \"It's raining\""
print(string_with_escaped_double_quote)

Output:
I'm fine
She said, "It's raining"

Both of these methods allow you to include single quotes or double quotes
inside a Python string without causing syntax errors. Choose the method
that best fits your code style and readability preferences.

3 Python Number
Introduction
Python supports several numerical data types, each with its own
characteristics and use cases. Here are the main numerical data types that
Python can handle:
1 Integer (int):

Integers represent whole numbers without any decimal
point.
Example: 5, -10, 1000.

2 Floating-Point (float):

Floating-point numbers represent real numbers with a
decimal point.
Example: 3.14, 2.718, -0.5.

3 Complex (complex):

Complex numbers represent numbers with both a real part
and an imaginary part.
They are written with a j or J suffix to denote the imaginary
part.
Example: 3 + 2j, -4.5 - 1.2j.

4 Decimal (decimal.Decimal):

Decimal numbers represent fixed-point decimal numbers
with arbitrary precision.
They are useful for financial and other applications
requiring exact decimal representations.
Example: Decimal('3.14'), Decimal('10.5').

5 Fraction (fractions.Fraction):

Fraction numbers represent rational numbers as fractions of
integers.
They are useful for exact representation of fractions.
Example: Fraction(3, 4), Fraction(5, 2).

6 Boolean (bool):

Boolean values represent truth values, which can be either
True or False.

They are commonly used for logical operations and control
flow.
Example: True, False.

7 Rational (sympy.Rational):

Rational numbers represent fractions of integers with
arbitrary precision.
They are similar to fractions but offer additional capabilities
and are part of the sympy library.
Example: Rational(3, 4), Rational(5, 2).

These are the main numerical data types that Python can handle. Depending
on your requirements, you can choose the appropriate data type for your
calculations and applications.

Integer
Creating integer numbers and performing simple calculations in Python is
straightforward. You can define integer variables and use mathematical
operators to perform calculations. Here's an example:
Create integer variables
x = 5
y = 3

Perform arithmetic operations
sum_result = x + y
difference_result = x - y
product_result = x * y
quotient_result = x / y # Division returns a float in Python 3.x
floor_division_result = x // y # Floor division returns an integer
remainder_result = x % y # Modulus operator returns the remainder

Print the results
print("Sum:", sum_result)
print("Difference:", difference_result)
print("Product:", product_result)
print("Quotient:", quotient_result)
print("Floor Division:", floor_division_result)
print("Remainder:", remainder_result)

Output:
Sum: 8
Difference: 2
Product: 15
Quotient: 1.6666666666666667
Floor Division: 1
Remainder: 2

In this example:

We create two integer variables x and y.
We perform simple arithmetic operations using the +, -, *, /, //,
and % operators.
We print the results of the calculations.

You can perform various arithmetic operations on integer numbers in
Python, including addition, subtraction, multiplication, division, floor
division, and modulus. Depending on the operands and operators used,
Python will return the appropriate result, which can be an integer or a
floating-point number.

Floats
Creating floating-point numbers and performing simple calculations in
Python is similar to working with integer numbers. Here's an example of
creating floating-point variables and performing arithmetic operations:
Create floating-point variables
x = 3.5
y = 2.0

Perform arithmetic operations
sum_result = x + y
difference_result = x - y
product_result = x * y
quotient_result = x / y

You can use the same arithmetic operators (+, -, *, /, //, %) as with integer
numbers to perform calculations with floating-point numbers. However, it's

important to note that when performing division (/), Python will always
return a floating-point result, even if the operands are integers.
Print the results
print("Sum:", sum_result)
print("Difference:", difference_result)
print("Product:", product_result)
print("Quotient:", quotient_result)

In this example:

We create two floating-point variables x and y.
We perform simple arithmetic operations using the +, -, *, and
/ operators.
We print the results of the calculations.

Output:
Sum: 5.5
Difference: 1.5
Product: 7.0
Quotient: 1.75

You can perform various arithmetic operations on floating-point numbers in
Python, and Python will return floating-point results for division operations.

Multiple Assignment
Multiple assignment in Python allows you to assign multiple variables in a
single line, each with its corresponding value. This can be done using tuple

unpacking or list unpacking. Here's how you can do multiple assignment:
1 Tuple Unpacking: You can use a tuple on the right-hand side

of the assignment operator to assign values to multiple
variables.

Tuple unpacking
x, y, z = 10, 20, 30

print("x:", x) # Output: 10
print("y:", y) # Output: 20
print("z:", z) # Output: 30

2 List Unpacking: You can use a list on the right-hand side of
the assignment operator to assign values to multiple
variables.

List unpacking
[a, b, c] = [10, 20, 30]

print("a:", a) # Output: 10
print("b:", b) # Output: 20
print("c:", c) # Output: 30

3 Extended Unpacking: You can use extended unpacking with
the * operator to assign the remaining elements of an
iterable to a single variable.

Extended unpacking
first, *rest = [1, 2, 3, 4, 5]

print("first:", first) # Output: 1
print("rest:", rest) # Output: [2, 3, 4, 5]

4 Swapping Variables: Multiple assignment is commonly used
to swap the values of variables without needing a
temporary variable.

Swapping variables

x = 10
y = 20

x, y = y, x

print("x:", x) # Output: 20
print("y:", y) # Output: 10

Multiple assignment is a convenient feature in Python that allows you to
write concise and readable code when working with multiple values
simultaneously.

Int to string
To convert an integer to a string in Python, you can use the str() function.
Here's how you can do it:
Convert an integer to a string
number = 123
string_number = str(number)

Print the string representation
print(string_number)

Output:
12
3

In this example, the str() function is used to convert the integer 123 to a
string representation "123". The resulting string can then be used in string
operations, printed, or stored in a variable for further processing.

Int from string
To convert a string to an integer in Python, you can use the int() function.
Here's how you can do it:
Convert a string to an integer
string_number = "123"
number = int(string_number)

Print the integer value
print(number)

Output:
12
3

In this example, the int() function is used to convert the string "123" to an
integer value 123. The resulting integer can then be used in arithmetic
operations, comparisons, or stored in a variable for further processing.

Int to floating point
To convert integers to floating-point numbers in Python, you can simply use
the float() function. Here's how you can do it:
Convert an integer to a floating-point number
integer_number = 123
float_number = float(integer_number)

Print the floating-point number
print(float_number)

Output:
123.0

In this example, the float() function is used to convert the integer 123 to a
floating-point number 123.0. The resulting floating-point number can then
be used in arithmetic operations, comparisons, or stored in a variable for
further processing.

4 Python List
Introduction
In Python, a list is a built-in data structure that represents a collection of
items in a specific order. Lists are mutable, meaning that you can modify
their elements after they have been created. Lists can contain elements of
different data types, and they can grow or shrink dynamically as needed.
Here's a simple example of a Python list:

Creating a list
my_list = [1, 2, 3, 4, 5]

Accessing elements of the list
print(my_list[0]) # Output: 1
print(my_list[2]) # Output: 3

Modifying elements of the list
my_list[1] = 10
print(my_list) # Output: [1, 10, 3, 4, 5]

Adding elements to the list
my_list.append(6)
print(my_list) # Output: [1, 10, 3, 4, 5, 6]

Removing elements from the list
my_list.remove(3)
print(my_list) # Output: [1, 10, 4, 5, 6]

You might need to use a list in Python when:
1 Storing Multiple Values: You need to store multiple values

of possibly different data types in a single variable.
2 Maintaining Order: You need to preserve the order of

elements in the collection.
3 Dynamic Size: You need a data structure that can

dynamically grow or shrink as elements are added or
removed.

4 Mutable Operations: You need to perform mutable
operations such as adding, removing, or modifying elements

in the collection.
5 Indexing and Slicing: You need to access elements by their

index or perform slicing operations to extract subsets of
elements.

Lists are incredibly versatile and are widely used in Python programming
for tasks such as storing collections of items, representing sequences of
data, managing sets of values, and more. They provide a flexible and
efficient way to work with collections of data in Python.

Access Elements by Index
In Python, you can access elements in a list by their index. List indexing
starts at 0, meaning the first element of the list has an index of 0, the second
element has an index of 1, and so on. You can also use negative indices to
access elements from the end of the list, where -1 represents the last
element, -2 represents the second-to-last element, and so forth. Here's how
you can access elements by index in a Python list:
Define a list
my_list = ['apple', 'banana', 'cherry', 'date', 'elderberry']

Access elements by index
print(my_list[0]) # Output: 'apple' (first element)
print(my_list[2]) # Output: 'cherry' (third element)
print(my_list[-1]) # Output: 'elderberry' (last element)
print(my_list[-2]) # Output: 'date' (second-to-last element)

In this example:

We define a list my_list containing five elements.
We use square brackets [] to access elements by their index
within the list.
Positive indices refer to elements starting from the beginning
of the list, while negative indices refer to elements starting
from the end of the list.
We print the values of the elements at index 0, 2, -1, and -2 to
demonstrate accessing elements by index.

Modify Elements
To modify elements in a Python list, you can directly assign new values to
specific elements using their indices. Lists in Python are mutable, which
means you can change their elements after they have been created. Here's
how you can modify elements in a Python list:

Define a list
my_list = ['apple', 'banana', 'cherry', 'date', 'elderberry']

Modify elements in the list
my_list[1] = 'blueberry' # Modify the element at index 1
my_list[-2] = 'grape' # Modify the second-to-last element

Print the modified list
print(my_list) # Output: ['apple', 'blueberry', 'cherry', 'grape', 'elderberry']

In this example:

We define a list my_list containing five elements.
We use square brackets [] to access elements by their indices
within the list.
We assign new values to elements at specific indices to modify
them.
We print the modified list to verify the changes.

You can modify elements in a list using any valid Python expression. This
means you can assign new values of the same type, different types, or even
the result of an expression involving other elements in the list. Lists provide
a flexible and powerful way to manage collections of data in Python.

Add Elements
To add elements to a Python list, you can use various methods such as
append(), insert(), or concatenation (+ operator). Here's how you can add
elements to a list using these methods:
1 Using append() method: The append() method adds a single

element to the end of the list.
Define a list
my_list = ['apple', 'banana', 'cherry']

Add a single element to the end of the list
my_list.append('date')

Print the modified list

print(my_list) # Output: ['apple', 'banana', 'cherry', 'date']

2 Using insert() method: The insert() method inserts a single
element at a specified index in the list.

Define a list
my_list = ['apple', 'banana', 'cherry']

Insert a single element at a specified index
my_list.insert(1, 'blueberry') # Insert 'blueberry' at index 1

Print the modified list
print(my_list) # Output: ['apple', 'blueberry', 'banana', 'cherry']

3 Using concatenation (+ operator): You can concatenate two
lists to create a new list containing elements from both lists.

Define a list
my_list = ['apple', 'banana', 'cherry']

Create another list of elements to add
new_elements = ['date', 'elderberry']

Concatenate the two lists to add elements
my_list += new_elements

Print the modified list
print(my_list) # Output: ['apple', 'banana', 'cherry', 'date', 'elderberry']

In each example, we first define a list (my_list). Then, we use one of the
methods (append(), insert(), or concatenation) to add elements to the list.
Finally, we print the modified list to verify the changes.
These methods provide flexible ways to add elements to a list in Python,
allowing you to easily extend the list with new data as needed.

Insert Elements
To insert elements in the middle of a Python list, you can use the insert()
method. The insert() method allows you to specify the index where you
want to insert the new element. Here's how you can insert elements into the
middle of a list:

Define a list
my_list = ['apple', 'banana', 'cherry', 'date']

Insert an element in the middle of the list
my_list.insert(2, 'blueberry') # Insert 'blueberry' at index 2

Print the modified list
print(my_list) # Output: ['apple', 'banana', 'blueberry', 'cherry', 'date']

In this example:

We define a list my_list containing four elements.
We use the insert() method to insert the element 'blueberry' at
index 2.
The index 2 indicates that the new element will be inserted
after the second element ('banana') and before the third
element ('cherry').
We print the modified list to verify the changes.

The insert() method modifies the original list in place by shifting existing
elements to make room for the new element. It's a convenient way to insert
elements at specific positions within a list.

Sort Permanently
To sort a Python list permanently using the sort() method, you can simply
call the sort() method on the list. The sort() method sorts the elements of the
list in ascending order by default. Here's how you can use the sort() method
to sort a list permanently:
Define a list
my_list = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

Sort the list permanently
my_list.sort()

Print the sorted list
print("Sorted list:", my_list) # Output: [1, 1, 2, 3, 3, 4, 5, 5, 6, 9]

In this example:

We define a list my_list containing unsorted elements.

We call the sort() method on the list my_list to sort its
elements permanently.
The sort() method modifies the original list by sorting its
elements in ascending order.
We print the sorted list to verify the changes.

5 Python Tuple
Introduction
A Python tuple is an immutable, ordered collection of elements. Immutable
means that once a tuple is created, its elements cannot be changed or
modified. Tuples are similar to lists, but they are enclosed in parentheses ()
instead of square brackets [].

You can create a tuple in Python by enclosing elements within parentheses
(). Here are a few examples of creating tuples:

Creating an empty tuple
empty_tuple = ()

Creating a tuple with elements
my_tuple = (1, 2, 3, 4, 5)

Creating a tuple with elements of different types
mixed_tuple = (1, "apple", 3.14, True)

Creating a single-element tuple (note the comma)
single_element_tuple = (42,)

You can also create a tuple without parentheses (not recommended for readability)

another_tuple = 1, 2, 3

Tuples are commonly used for grouping data that belongs together, like
coordinates, records from a database, or returning multiple values from a
function. Because tuples are immutable, they provide a certain level of
safety when dealing with data that should not be changed accidentally.

Loop
Looping through all values in a Python tuple is similar to looping through a
list. You can use a for loop to iterate over each element in the tuple. Here's
how you can do it:
my_tuple = (1, 2, 3, 4, 5)

Loop through all values in the tuple
for value in my_tuple:

print(value)

This loop iterates over each element in the my_tuple tuple and prints each
value.
Alternatively, you can also use indexing to loop through a tuple if you need
access to the index:
my_tuple = (1, 2, 3, 4, 5)

Loop through all values in the tuple with index
for index in range(len(my_tuple)):

value = my_tuple[index]
print(value)

However, using the first method with a for loop directly iterating over the
tuple elements is generally more Pythonic and preferred.

length
In Python, you can use the len() function to get the length (number of
elements) of a tuple. Here's how you can use it:
my_tuple = (1, 2, 3, 4, 5)

Get the length of the tuple

length = len(my_tuple)

print("Length of the tuple:", length)

Output:
Length of the tuple: 5

The len() function returns the number of elements in the tuple, in this case,
5. This function can be used with tuples as well as other sequences like
lists, strings, and dictionaries.

max/min
In Python, you can use the max() and min() functions to find the maximum
and minimum elements, respectively, in a tuple. Here's how you can use
them:
my_tuple = (3, 7, 1, 9, 2, 6)

Find the maximum element in the tuple
maximum = max(my_tuple)
print("Maximum element:", maximum)

Find the minimum element in the tuple
minimum = min(my_tuple)
print("Minimum element:", minimum)

Output:
Maximum element: 9
Minimum element: 1

Both max() and min() functions return the maximum and minimum
elements of the tuple, respectively. These functions work similarly for other
iterable data types like lists and strings as well.

tuple to string
To convert a tuple to a string in Python, you can use string manipulation
techniques. One common approach is to use the join() method along with a
string concatenation or formatting to convert the elements of the tuple into a
string. Here's how you can do it:

Using join() method with string concatenation:
my_tuple = (1, 2, 3, 4, 5)

Convert tuple to string
tuple_string = ', '.join(str(element) for element in my_tuple)

print("Tuple as string:", tuple_string)

Using join() method with string formatting:
my_tuple = (1, 2, 3, 4, 5)

Convert tuple to string with formatting
tuple_string = ', '.join(map(str, my_tuple))

print("Tuple as string:", tuple_string)

Both examples will output:
Tuple as string: 1, 2, 3, 4, 5

In both examples, the join() method is used to concatenate the elements of
the tuple into a single string. In the first example, we use a generator
expression along with string concatenation inside the join() method. In the
second example, we use map() to convert each element of the tuple to a
string, and then use string formatting inside the join() method.

6 Python Dictionary
Introduction
A Python dictionary is an unordered collection of key-value pairs. Each key
in a dictionary is unique and immutable, and it maps to a corresponding
value. You can think of a dictionary like a real-world dictionary, where each
word (key) has a definition (value).

You can create a dictionary in Python using curly braces {} and specifying
key-value pairs separated by colons :. Here's how you can create a
dictionary:
Creating an empty dictionary
empty_dict = {}

Creating a dictionary with key-value pairs
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Creating a dictionary using the dict() constructor
another_dict = dict(name='Alice', age=25, city='Los Angeles')

In the examples above:

empty_dict is an empty dictionary.
my_dict contains three key-value pairs: 'name': 'John', 'age':
30, and 'city': 'New York'.
another_dict is created using the dict() constructor, where keys
and values are specified as keyword arguments.

You can access, modify, add, or remove elements from a dictionary using its
keys. Dictionaries are widely used for storing and retrieving data efficiently,
especially when you need to access values by their associated keys.

Loop Pairs
You can loop through all key-value pairs in a Python dictionary using a for
loop. Python dictionaries provide several methods to access keys, values, or
both. Here's how you can loop through all key-value pairs in a dictionary:
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Loop through all key-value pairs

for key, value in my_dict.items():
print(key, '=', value)

In this example, my_dict.items() returns a view object that provides a
dynamic view of the dictionary's key-value pairs. The for loop iterates over
each key-value pair, and key and value are assigned to each key-value pair
respectively. Inside the loop, you can access both the key and value of each
pair and perform any desired operations.
Output:
name = John
age = 30
city = New York

Using .items() is the most common and efficient way to loop through all
key-value pairs in a dictionary in Python.

Access
You can access values in a Python dictionary using the keys as indices.
Here are a few methods to access values in a dictionary:
1 Using square brackets []:
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Accessing values using keys
name = my_dict['name']
age = my_dict['age']
city = my_dict['city']

print("Name:", name)
print("Age:", age)
print("City:", city)

2 Using the get() method:
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Accessing values using get() method

name = my_dict.get('name')
age = my_dict.get('age')
city = my_dict.get('city')

print("Name:", name)
print("Age:", age)
print("City:", city)

Both methods will output:
Name: John
Age: 30
City: New York

In both examples, we access the values in the dictionary my_dict using the
keys 'name', 'age', and 'city'. Using square brackets is straightforward and
raises a KeyError if the key is not found in the dictionary. Using the get()
method allows you to provide a default value if the key is not found, which
can help avoid KeyError exceptions.

Chapter 3 :
Operators

1 Python Arithmetic Operators

Introduction
In Python, arithmetic operators are used to perform mathematical
operations. Here's a list of arithmetic operators in Python:
1 Addition: +
2 Subtraction: -
3 Multiplication: *
4 Division: /
5 Floor Division (integer division): //

6 Modulus (remainder): %
7 Exponentiation: **

You can use these operators to perform arithmetic operations on numbers in
Python.

Usage
Here are examples illustrating the use of each arithmetic operator in Python:
1 Addition (+):
a = 5
b = 3
result = a + b
print("Addition:", result) # Output: Addition: 8

2 Subtraction (-):
a = 7
b = 4
result = a - b
print("Subtraction:", result) # Output: Subtraction: 3

3 Multiplication (*):
a = 6
b = 5
result = a * b
print("Multiplication:", result) # Output: Multiplication: 30

4 Division (/):
a = 10
b = 3
result = a / b
print("Division:", result) # Output: Division: 3.3333333333333335

5 Floor Division (//):

a = 10
b = 3
result = a // b
print("Floor Division:", result) # Output: Floor Division: 3

6 Modulus (%):
a = 10
b = 3
result = a % b
print("Modulus:", result) # Output: Modulus: 1

7 Exponentiation ():**
a = 2
b = 3
result = a ** b
print("Exponentiation:", result) # Output: Exponentiation: 8

These examples demonstrate the use of each arithmetic operator in Python
with simple numerical values.
Handle Divide By Zero
To handle division by zero and multiple exceptions in Python, you can use
the try and except blocks. Here's how you can handle these scenarios:
1 Handling Divide By Zero: You can catch the ZeroDivisionError
exception when dividing by zero.
2 Handling Multiple Exceptions: You can catch multiple exceptions by
specifying them in a tuple after except.

Here's an example illustrating both scenarios:

def divide_numbers(a, b):
try:

result = a / b
print("Result of division:", result)

except ZeroDivisionError:
print("Error: Division by zero is not allowed.")

except (TypeError, ValueError):
print("Error: Invalid input or type mismatch.")

except Exception as e:
print("An unexpected error occurred:", e)

Example usage
divide_numbers(10, 0) # Division by zero
divide_numbers(10, 'a') # Type mismatch

In this example:

The try block attempts to perform the division operation.
If a ZeroDivisionError occurs (division by zero), the first
except block is executed.
If a TypeError or ValueError occurs (for example, if b is not a
valid number), the second except block is executed.
If any other unexpected error occurs, it's caught by the last
except block, which captures all exceptions.
The as keyword is used to capture the exception object, which
can be useful for debugging.

You can customize the error messages and handling logic based on your
requirements within each except block.

Integer Division
In Python, integer division is performed using the double-slash operator //.
This operator divides one number by another and returns the integer result,
discarding any fractional part.
Here's an example:
result = 10 // 3
print(result) # Output: 3

In this example, 10 // 3 performs integer division, resulting in 3.
Now, regarding the remainder operator %, it returns the remainder of the
division operation. It's useful when you want to find out if one number is
divisible by another, and if not, what the remainder is.
Here's an example:
remainder = 10 % 3

print(remainder) # Output: 1

In this example, 10 % 3 returns 1 because 10 divided by 3 leaves a
remainder of 1.

You might use the remainder operator in various scenarios, such as
checking if a number is even or odd (number % 2 == 0 for even numbers),
or for cycling through a list of elements in a round-robin manner. It's a
versatile operator that finds use in many mathematical and programming
scenarios.

Common Divisors
You can find the common divisors of two numbers in Python by iterating
through the range of numbers from 1 to the minimum of the two numbers
and checking if both numbers are divisible by that number without
remainder. Here's how you can do it:
def common_divisors(num1, num2):

Find the minimum of the two numbers
min_num = min(num1, num2)

Initialize a list to store common divisors
common_divisors_list = []

Iterate through the range from 1 to min_num
for i in range(1, min_num + 1):

Check if both numbers are divisible by i without remainder
if num1 % i == 0 and num2 % i == 0:
common_divisors_list.append(i)

return common_divisors_list

Example usage
num1 = 12
num2 = 18
result = common_divisors(num1, num2)

print("Common divisors of", num1, "and", num2, ":", result)

In this example:

The common_divisors function takes two integers num1 and
num2 as input.
It finds the minimum of the two numbers to determine the
range of the loop.
It initializes an empty list common_divisors_list to store the
common divisors.
It iterates through the range from 1 to the minimum of the two
numbers.
For each number i, it checks if both num1 and num2 are
divisible by i without remainder.
If they are, i is added to the common_divisors_list.
Finally, it returns the list of common divisors.

You can use this function to find the common divisors of any two numbers
by passing them as arguments to the function.

Sum of squares
To find the sum of squares of the first n natural numbers in Python, you can
use a simple formula and compute the sum directly. The formula to find the
sum of squares of the first n natural numbers is given by:
[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}]

Here's how you can implement it in Python:
def sum_of_squares_of_first_n(n):

return n * (n + 1) * (2 * n + 1) // 6

Example usage
n = 5
result = sum_of_squares_of_first_n(n)
print("Sum of squares of the first", n, "natural numbers:", result)

In this implementation:

The sum_of_squares_of_first_n function takes an integer n as
input.
It computes the sum of squares using the formula
(\frac{n(n+1)(2n+1)}{6}).
The result is returned.

You can adjust the value of n to find the sum of squares of the first n natural
numbers for any value of n.

2 Python Bitwise Operators
Introduction
In Python, bitwise operators are used to perform bitwise operations on
integers. Here's a list of bitwise operators in Python:
1 Bitwise AND (&): Performs a bitwise AND operation on the

corresponding bits of two integers.

2 Bitwise OR (|): Performs a bitwise OR operation on the
corresponding bits of two integers.

3 Bitwise XOR (^): Performs a bitwise XOR (exclusive OR)
operation on the corresponding bits of two integers.

4 Bitwise NOT (~): Performs a bitwise NOT (complement)
operation, which inverts all the bits of an integer.

5 Left Shift (<<): Shifts the bits of an integer to the left by a
specified number of positions, filling the shifted positions
with zeros.

6 Right Shift (>>): Shifts the bits of an integer to the right by a
specified number of positions, filling the shifted positions
with zeros or the sign bit (for signed integers).

These operators work at the bit level, manipulating individual bits within
integer values. They are commonly used in low-level programming,
hardware manipulation, and optimization tasks.

Usage
Here are examples illustrating the use of each bitwise operator in Python:
1 Bitwise AND (&):
a = 5 # 0101 in binary
b = 3 # 0011 in binary

result = a & b
print("Bitwise AND:", result) # Output: 1 (0001 in binary)

2 Bitwise OR (|):
a = 5 # 0101 in binary
b = 3 # 0011 in binary

result = a | b
print("Bitwise OR:", result) # Output: 7 (0111 in binary)

3 Bitwise XOR (^):
a = 5 # 0101 in binary
b = 3 # 0011 in binary

result = a ^ b
print("Bitwise XOR:", result) # Output: 6 (0110 in binary)

4 Bitwise NOT (~):
a = 5 # 0101 in binary

result = ~a
print("Bitwise NOT:", result) # Output: -6 (1010 in binary for 32-bit integers)

5 Left Shift (<<):

a = 5 # 0101 in binary

result = a << 2
print("Left Shift:", result) # Output: 20 (10100 in binary)

6 Right Shift (>>):
a = 10 # 1010 in binary

result = a >> 1
print("Right Shift:", result) # Output: 5 (0101 in binary)

These examples demonstrate the use of each bitwise operator in Python.
You can experiment with different values to see how the operators behave
with various inputs.

Power of 2
You can determine whether a number is a power of two using bitwise
operators in Python. A number is a power of two if and only if it has exactly
one bit set in its binary representation. Here's how you can do it:

def is_power_of_two(num):
A number is a power of two if it is greater than 0 and has exactly one bit set
return num > 0 and (num & (num - 1)) == 0

Example usage
num1 = 4
num2 = 6

print(num1, "is a power of two:", is_power_of_two(num1)) # Output: True
print(num2, "is a power of two:", is_power_of_two(num2)) # Output: False

In this example:

The is_power_of_two function checks if a given number is a
power of two.
It first checks if the number is greater than 0 (since negative
numbers cannot be powers of two).
Then, it checks if the number has exactly one bit set by
performing a bitwise AND operation between the number and
its predecessor (i.e., num & (num - 1)). If the result is 0, it

means that only one bit is set, indicating that the number is a
power of two.
The function returns True if the number is a power of two, and
False otherwise.
The example usage demonstrates checking whether numbers 4
and 6 are powers of two. Adjust the numbers as needed to test
other values.

Sum odd even digit
You can sum the odd and even digits of a number in Python by iterating
through each digit of the number, checking if it's odd or even, and then
summing them separately. Bitwise operators are not typically used for this
task as it's more straightforward to accomplish with arithmetic and modulus
operators. Here's how you can do it:
def sum_odd_even_digits(num):

odd_sum = 0
even_sum = 0

Iterate through each digit of the number
while num > 0:

digit = num % 10
if digit % 2 == 0:
even_sum += digit
else:
odd_sum += digit
num //= 10

return odd_sum, even_sum

Example usage
number = 123456

odd_sum, even_sum = sum_odd_even_digits(number)
print("Sum of odd digits:", odd_sum)
print("Sum of even digits:", even_sum)

In this example:

The sum_odd_even_digits function takes a number (num) as
input.

It initializes variables odd_sum and even_sum to store the
sums of odd and even digits, respectively.
It iterates through each digit of the number by repeatedly
dividing the number by 10 and extracting the last digit using
the modulus operator.
It checks if each digit is odd or even using the modulus
operator (%).
It adds the digit to the corresponding sum based on whether it's
odd or even.
The function returns the sums of odd and even digits.
The example usage demonstrates summing the odd and even
digits of the number 123456. You can pass any integer to the
function to sum the odd and even digits of that number.

3 Python Comparison Operators
Introduction
In Python, comparison operators are used to compare values and return
Boolean results (True or False) based on the comparison. Here's a list of
comparison operators in Python:
1 Equal to (==): Returns True if the operands are equal.
1 Not equal to (!=): Returns True if the operands are not

equal.
3 Greater than (>): Returns True if the left operand is greater

than the right operand.
4 Less than (<): Returns True if the left operand is less than

the right operand.
5 Greater than or equal to (>=): Returns True if the left

operand is greater than or equal to the right operand.
6 Less than or equal to (<=): Returns True if the left operand

is less than or equal to the right operand.

These operators are commonly used in conditional statements, loops, and
other contexts where comparison of values is needed.

Usage
Here are examples illustrating the use of each comparison operator in
Python:
1 Equal to (==):
a = 5
b = 5

result = a == b
print("Is", a, "equal to", b, "?", result) # Output: Is 5 equal to 5 ? True

2 Not equal to (!=):
a = 5
b = 6

result = a != b
print("Is", a, "not equal to", b, "?", result) # Output: Is 5 not equal to 6 ? True

3 Greater than (>):
a = 6
b = 5

result = a > b
print("Is", a, "greater than", b, "?", result) # Output: Is 6 greater than 5 ? True

4 Less than (<):
a = 5
b = 6

result = a < b
print("Is", a, "less than", b, "?", result) # Output: Is 5 less than 6 ? True

5 Greater than or equal to (>=):
a = 6
b = 6

result = a >= b
print("Is", a, "greater than or equal to", b, "?", result) # Output: Is 6 greater than or equal to 6 ?
True

6 Less than or equal to (<=):
a = 5
b = 6

result = a <= b
print("Is", a, "less than or equal to", b, "?", result) # Output: Is 5 less than or equal to 6 ? True

These examples demonstrate the use of each comparison operator in
Python. You can change the values of a and b to test different comparisons.

4 Python Logical Operators
Introduction
In Python, logical operators are used to combine multiple conditions and
produce a single Boolean result (True or False). Here's a list of logical
operators in Python:
1 Logical AND (and): Returns True if both operands are True.
2 Logical OR (or): Returns True if at least one of the operands

is True.
3 Logical NOT (not): Returns True if the operand is False, and

False if the operand is True.

These operators are commonly used in conditional statements, loops, and
other contexts where logical operations are needed.

Usage
Here are examples illustrating the use of each logical operator in Python:
1 Logical AND (and):
a = True
b = False

result = a and b

print("Logical AND:", result) # Output: Logical AND: False

2 Logical OR (or):
a = True
b = False

result = a or b
print("Logical OR:", result) # Output: Logical OR: True

3 Logical NOT (not):
a = True

result = not a
print("Logical NOT:", result) # Output: Logical NOT: False

These examples demonstrate the use of each logical operator in Python.
You can change the values of a and b to test different logical operations.

Combine
You can combine logical operators to create more complex conditions in
Python by using parentheses to group expressions and applying logical
operators (and, or, not) as needed. Here's an example that demonstrates
combining logical operators:

Example: Check if a number is between 10 and 20, or outside the range 30 to 40

def check_number_range(num):
if (num >= 10 and num <= 20) or (num < 30 or num > 40):

return True
else:

return False

Example usage
number1 = 15
number2 = 25
number3 = 35

print("Is", number1, "between 10 and 20 or outside the range 30 to 40?",
check_number_range(number1)) # Output: True
print("Is", number2, "between 10 and 20 or outside the range 30 to 40?",
check_number_range(number2)) # Output: False
print("Is", number3, "between 10 and 20 or outside the range 30 to 40?",
check_number_range(number3)) # Output: True

In this example:

The check_number_range function takes a number (num) as
input and checks if it meets the specified conditions.
The condition is defined using logical operators:
(num >= 10 and num <= 20) checks if the number is between
10 and 20.
(num < 30 or num > 40) checks if the number is outside the
range 30 to 40.
The or operator is used to combine these two conditions.
The and operator is used within the first condition to check if
the number satisfies both the lower and upper bounds of the
range.

Parentheses are used to group expressions and ensure the
correct evaluation of the conditions.
The function returns True if the number meets the conditions
and False otherwise.
The example usage demonstrates checking whether three
different numbers meet the specified conditions. Adjust the
numbers and conditions as needed for your specific
requirements.

Greatest of three numbers
You can create a Python program to find the greatest of three numbers using
logical operators (and and or) to compare the numbers. Here's how you can
do it:
def find_greatest(num1, num2, num3):

if num1 >= num2 and num1 >= num3:
return num1

elif num2 >= num1 and num2 >= num3:
return num2

else:
return num3

Example usage
number1 = 10
number2 = 20
number3 = 15

greatest = find_greatest(number1, number2, number3)
print("The greatest of the three numbers is:", greatest)

In this program:

The find_greatest function takes three numbers (num1, num2,
num3) as input.
It compares the numbers using logical operators (and and or)
to find the greatest among them.
If num1 is greater than or equal to both num2 and num3, it
returns num1 as the greatest.
If num2 is greater than or equal to both num1 and num3, it
returns num2 as the greatest.
Otherwise, it returns num3 as the greatest.
The example usage demonstrates finding the greatest of three
numbers (10, 20, and 15). You can adjust the values of
number1, number2, and number3 to find the greatest of any
three numbers.

5 Python Ternary Operators
Introduction
The ternary operator in Python is a conditional expression that evaluates a
condition and returns one of two values depending on whether the condition
is true or false. It is also known as the conditional expression. The syntax of
the ternary operator in Python is as follows:
x = <value_if_true> if <condition> else <value_if_false>

Here's how the ternary operator works:

<condition> is evaluated first. If it is true, <value_if_true> is
returned; otherwise, <value_if_false> is returned.
The ternary operator is an expression, not a statement, so it can
be used within larger expressions or assignments.

Here's an example of using the ternary operator in Python:
x = 10
y = 20

max_value = x if x > y else y
print("Maximum value:", max_value) # Output: Maximum value: 20

In this example:

The condition x > y is evaluated first. If it is true, x is assigned
to max_value; otherwise, y is assigned.
Since x (10) is not greater than y (20), the value of y (20) is
assigned to max_value.
The ternary operator makes the code concise and readable,
especially in situations where you need to choose between two
values based on a condition.

Usage
Here are examples illustrating the use of the ternary operator in Python:
1 Assigning Maximum Value:

x = 10
y = 20

max_value = x if x > y else y
print("Maximum value:", max_value) # Output: Maximum value: 20

2 Checking Even or Odd:
num = 15

result = "Even" if num % 2 == 0 else "Odd"
print(num, "is", result) # Output: 15 is Odd

3 Assigning Absolute Value:
number = -10

absolute_value = number if number >= 0 else -number
print("Absolute value:", absolute_value) # Output: Absolute value: 10

4 Checking for Validity:
username = "john_doe"

message = "Valid" if len(username) >= 8 else "Invalid"
print("Username is", message) # Output: Username is Valid

5 Handling Division by Zero:
dividend = 10
divisor = 0

result = dividend / divisor if divisor != 0 else "Error: Division by Zero"
print("Result:", result) # Output: Result: Error: Division by Zero

These examples demonstrate the versatility of the ternary operator in
Python for making concise conditional assignments or expressions.

Largest
You can create a Python program to find the largest of two numbers entered
by the user using ternary operators as follows:
Input two numbers from the user

number1 = float(input("Enter first number: "))
number2 = float(input("Enter second number: "))

Determine the largest number using ternary operator
largest = number1 if number1 > number2 else number2

Display the result
print("The largest number is:", largest)

In this program:

The input function is used to get two numbers as input from
the user.
Ternary operator is used to determine the largest of the two
numbers.
If number1 is greater than number2, number1 is assigned to
largest; otherwise, number2 is assigned.
The result is displayed to the user.

Chapter 4 :
Statements

1 Python if
Introduction
In Python, the if statement is a control flow statement that allows you to
execute a block of code based on whether a specified condition evaluates to
True. It is used for decision-making in programming.
The syntax of the if statement in Python is as follows:
if condition:

Code block to execute if the condition is True
statement1
statement2
...

Here's how the if statement works:

The condition is evaluated. If it is True, the code block
following the if statement is executed. If it is False, the code
block is skipped.
The code block under the if statement is typically indented to
indicate that it belongs to the if statement. The indentation is
usually four spaces, but it can be any consistent whitespace.
Optionally, you can include an else statement to specify a
block of code to execute if the condition is False. Additionally,
you can use elif (short for "else if") to specify additional
conditions to check.

Here's an example of using the if statement in Python:
x = 10

if x > 5:
print("x is greater than 5")

In this example:

The condition x > 5 is evaluated. Since x is 10, which is
greater than 5, the condition is True.
Therefore, the code block under the if statement is executed,
and the message "x is greater than 5" is printed to the console.

Syntax
The if statement in Python can be used in various ways to create conditional
logic. Here are the different forms of if statements along with their syntax:
1 Basic if statement:
if condition:

Code block to execute if the condition is True
statement1
statement2
...

2 if-else statement:
if condition:

Code block to execute if the condition is True
statement1
statement2
...

else:
Code block to execute if the condition is False
statement3
statement4
...

3 Chained if-elif-else statement:
if condition1:

Code block to execute if condition1 is True
statement1
statement2
...

elif condition2:
Code block to execute if condition2 is True
statement3
statement4
...

elif condition3:
Code block to execute if condition3 is True
statement5
statement6
...

else:
Code block to execute if all conditions are False
statement7
statement8
...

4 Nested if statement:
if condition1:

if condition2:
Code block to execute if both condition1 and condition2 are True
statement1
statement2
...

In each form of the if statement, you can include one or more conditions
and corresponding code blocks to execute based on the evaluation of those
conditions. The else and elif clauses are optional and can be used to specify
alternate code blocks to execute when the conditions are False.

Even Odd
You can check whether a given number is even or odd in Python using an if
statement with the modulo operator (%). Here's how you can do it:
def check_even_odd(number):

if number % 2 == 0:
print(number, "is even.")

else:
print(number, "is odd.")

Example usage
number = 7
check_even_odd(number)

In this program:

The check_even_odd function takes a number (number) as
input.
It checks if the number is even or odd using the modulo
operator (%). If the remainder when dividing the number by 2
is 0, the number is even; otherwise, it is odd.
If the number is even (number % 2 == 0), it prints a message
indicating that the number is even. Otherwise, it prints a
message indicating that the number is odd.
The example usage demonstrates checking whether the
number 7 is even or odd. You can pass any integer to the
function to check if it's even or odd.

Largest/smallest
You can read in three integers from the user, then use if statements to
determine the largest and smallest integers among them. Here's how you
can do it:
Read in three integers from the user
num1 = int(input("Enter first integer: "))
num2 = int(input("Enter second integer: "))
num3 = int(input("Enter third integer: "))

Assume the first number is both the largest and smallest initially
largest = num1
smallest = num1

Determine the largest integer
if num2 > largest:

largest = num2
if num3 > largest:

largest = num3

Determine the smallest integer
if num2 < smallest:

smallest = num2
if num3 < smallest:

smallest = num3

Print the largest and smallest integers
print("Largest integer:", largest)
print("Smallest integer:", smallest)

In this program:

We first read in three integers (num1, num2, num3) from the
user using the input function, and convert them to integers
using the int function.
We initialize the variables largest and smallest to the value of
num1, assuming initially that num1 is both the largest and
smallest integer.
We then use if statements to compare num2 and num3 with
largest to determine the largest integer, and similarly compare
them with smallest to determine the smallest integer.

Finally, we print the largest and smallest integers to the
console.

Positive or negative
You can create a Python program to check whether a given integer is
positive or negative using an if statement like this:
Take input from the user
num = int(input("Enter an integer: "))

Check if the number is positive, negative, or zero
if num > 0:

print("The number is positive.")
elif num < 0:

print("The number is negative.")
else:

print("The number is zero.")

In this code:

We take an integer input from the user using the input()
function.
Then, we convert the input into an integer using the int()
function.
We use the if, elif, and else statements to check whether the
number is positive, negative, or zero.
If the number is greater than 0, it's positive. If it's less than 0,
it's negative. Otherwise, it's zero.

2 Python while
Syntax
The syntax of a while loop in Python is as follows:
while condition:

Code block to be executed repeatedly
as long as the condition is True

In this syntax:

condition is an expression that is evaluated before each
iteration of the loop. If the condition evaluates to True, the
loop body is executed. If the condition evaluates to False, the
loop terminates.
The colon (:) at the end of the while statement indicates the
start of the indented block of code that will be executed
repeatedly as long as the condition is True.
The code inside the loop block is indented to signify that it
belongs to the loop body.
The loop continues to execute the code block repeatedly until
the condition becomes False. If the condition never becomes
False, you can end up with an infinite loop.

break
You can use the break statement to exit a while loop prematurely in Python.
Here's how you can use it:
while condition:

Code block to be executed repeatedly
as long as the condition is True
if some_condition:

break # Exit the loop if some condition is met

In this code:

Inside the while loop, there's an if statement that checks for a
certain condition (some_condition).
If some_condition evaluates to True, the break statement is
executed.

When the break statement is encountered, it immediately exits
the while loop, regardless of whether the loop's condition is
still True.
After the break statement is executed, the program continues
to execute the code that follows the loop.

continue
You can use the continue statement to skip the current iteration of a while
loop and proceed to the next iteration. Here's how you can use it:
while condition:

Code block to be executed repeatedly
as long as the condition is True

if some_condition:
continue # Skip the rest of the loop's code and start the next iteration

Code here will be skipped if some_condition is True

In this code:

Inside the while loop, there's an if statement that checks for a
certain condition (some_condition).
If some_condition evaluates to True, the continue statement is
executed.
When the continue statement is encountered, it skips the
remaining code in the loop's block for the current iteration and
moves on to the next iteration of the loop.
If some_condition is False, the code after the if block will be
executed normally for that iteration.

3 Python for loop
Introduction

In Python, a for loop is used to iterate over a sequence (such as a list, tuple,
string, or range) or any iterable object. The for loop executes a block of
code multiple times, once for each item in the sequence or iterable.
The syntax of a for loop in Python is as follows:
for item in sequence:

Code block to be executed for each item in the sequence

In this syntax:

item is a variable that takes on the value of each item in the
sequence during each iteration of the loop.
sequence is the sequence of elements over which the loop
iterates. It can be any iterable object, such as a list, tuple,
string, or range.
The colon (:) at the end of the for statement indicates the start
of the indented block of code that will be executed for each
item in the sequence.
The code inside the loop block is indented to signify that it
belongs to the loop body.
During each iteration of the loop, the item variable takes on
the value of the next element in the sequence, and the code
block inside the loop is executed with that value.

Here's a simple example of using a for loop to iterate over a list:
fruits = ["apple", "banana", "cherry"]
for fruit in fruits:

print(fruit)

Output:
apple
banana
cherry

In this example, the for loop iterates over each item in the fruits list, and
during each iteration, the fruit variable takes on the value of the current
item, which is then printed.

Syntax
In Python, the for loop can be used in different ways depending on the type
of iterable you are iterating over or the specific requirement of the loop.
Here are some common variations of for loop statements:
1 Iterating over a sequence (list, tuple, string, etc.):
sequence = [1, 2, 3, 4, 5]
for item in sequence:

Code block to be executed for each item in the sequence

2 Iterating over a range of numbers:
for i in range(start, stop, step):

Code block to be executed for each value of i in the range

Here, start is the starting value of the range (inclusive), stop is the ending
value of the range (exclusive), and step is the step size between each value
(default is 1).

3 Iterating over a sequence with index using enumerate():
sequence = ["a", "b", "c", "d"]
for index, value in enumerate(sequence):

Code block to be executed for each (index, value) pair

4 Iterating over multiple sequences simultaneously using zip():
sequence1 = [1, 2, 3]
sequence2 = ["a", "b", "c"]
for item1, item2 in zip(sequence1, sequence2):

Code block to be executed for each corresponding pair of items

5 Iterating over dictionary keys, values, or items:
dictionary = {"a": 1, "b": 2, "c": 3}
Iterating over keys
for key in dictionary:

Code block to be executed for each key
Iterating over values
for value in dictionary.values():

Code block to be executed for each value
Iterating over key-value pairs
for key, value in dictionary.items():

Code block to be executed for each (key, value) pair

These are some of the common ways you can use the for loop in Python,
but there can be more variations depending on the specific requirements of
your code.

Loop on array
In Python, you can print each element in an array (or list) using a for loop.
Here's how you can do it:
Define an array (or list)
my_array = [1, 2, 3, 4, 5]

Iterate over each element in the array using a for loop
for element in my_array:

print(element)

In this code:

We define an array (or list) called my_array containing some
elements [1, 2, 3, 4, 5].
We use a for loop to iterate over each element in the array.
During each iteration, the element variable takes on the value
of the current element in the array.
Inside the loop, we print each element using the print()
function.

This will print each element of the array on a new line. If you want to print
them on the same line, you can use the end parameter of the print()
function, like this:
Print each element on the same line
for element in my_array:

print(element, end=" ")

This will print each element separated by a space on the same line.

4 Python pass
Introduction
In Python, the pass statement is a null operation. It doesn't do anything, and
it acts as a placeholder when a statement is syntactically required but you
don't want to execute any code.

You might use the pass statement in the following situations:

1 Placeholder for future code: You can use pass as a placeholder when
you want to indicate that a block of code will be implemented later, but you
want to have a syntactically correct placeholder in the meantime.
if condition:

To be implemented later
pass

2 Empty function or class: When you define a function or a class that
doesn't contain any code yet, you can use pass to indicate that it's
intentionally empty.
def my_function():

pass

class MyClass:
pass

3 Implementing a placeholder for a loop or conditional block:
Sometimes, when designing your code, you might want to include a loop or
conditional block that doesn't do anything yet. In such cases, you can use
pass as a placeholder.
for item in my_list:

Placeholder for future
code

pass

if condition:
Placeholder for future

code
pass

Using pass allows your code to remain syntactically correct while providing
a clear indication that the block of code is intentionally left empty or will be
implemented later.

5 Python break
Introduction
In Python, the break statement is used to exit (or "break out of") a loop
prematurely. When a break statement is encountered inside a loop (such as a
for loop or a while loop), the loop is immediately terminated, and the
program execution continues from the statement immediately following the
loop.

Here's a basic example of how break statement works in a loop:
for i in range(5):

print(i)
if i == 2:

break

In this example, the loop iterates over the range from 0 to 4. When i
becomes equal to 2, the if condition i == 2 becomes true, and the break

statement is executed. As a result, the loop is terminated prematurely, and
the program execution continues after the loop.
Output:
0
1
2

After i reaches 2, the loop is terminated, and the statement print("Loop
terminated") (if present) would be executed next.

The break statement is often used in combination with conditional
statements (if statements) inside loops to exit the loop based on certain
conditions. It provides a way to terminate the loop prematurely when a
specific condition is met, which can be useful for optimization or for
handling special cases.

Syntax
In Python, the break statement is used within loops to exit the loop
prematurely. Here are some common ways to use the break statement with
different types of loops:
1 Using break in a for loop:
for item in iterable:

Code block
if condition:

break

2 Using break in a while loop:
while condition:

Code block
if condition:

break

In both cases:

The break statement is used to exit the loop immediately when
a certain condition is met.
It can be placed inside a conditional statement (if statement) to
define the condition under which the loop should be
terminated.
Once the break statement is executed, the loop is terminated,
and the program execution continues from the statement
immediately following the loop.

Here's an example demonstrating the usage of break in both types of loops:
Using break in a for loop
for i in range(5):

print(i)
if i == 2:

break

Using break in a while loop
i = 0
while i < 5:

print(i)
if i == 2:

break
i += 1

Output:
0
1
2
0
1
2

In both cases, the loop terminates prematurely when i becomes equal to 2
due to the break statement.

break for
In Python, you can use the break statement within a for loop to exit the loop
prematurely based on a certain condition. Here's how you can use the break
statement in a for loop:

Example: Using break in a for loop
for item in iterable:

Code block
if condition:

break

In this syntax:

iterable is the sequence or iterable object over which the loop
iterates.
item is the loop variable that takes on the value of each item in
the iterable during each iteration.
The if statement with condition inside the loop block checks if
a certain condition is met.
If the condition evaluates to True, the break statement is
executed, causing the loop to terminate immediately, and the
program execution continues from the statement immediately
following the loop.

Here's a simple example demonstrating the usage of break in a for loop:
Example: Using break in a for loop
fruits = ["apple", "banana", "cherry", "date"]
for fruit in fruits:

print(fruit)
if fruit == "cherry":

break

Output:
apple
banana
cherry

In this example, the loop terminates prematurely when the fruit variable
becomes equal to "cherry" due to the break statement.

break nested for

In Python, you can use the break statement within a nested for loop to exit
the inner loop prematurely based on a certain condition. Here's how you can
use the break statement in a nested for loop:
Example: Using break in a nested for loop
for outer_item in outer_iterable:

Outer loop code block
for inner_item in inner_iterable:

Inner loop code block
if condition:

break
if condition:

break

In this syntax:

outer_iterable is the sequence or iterable object over which the
outer loop iterates.
inner_iterable is the sequence or iterable object over which the
inner loop iterates.
outer_item and inner_item are the loop variables that take on
the value of each item in the outer_iterable and inner_iterable,
respectively, during each iteration.
The if statement with condition inside the inner loop block
checks if a certain condition is met. If the condition evaluates
to True, the break statement is executed, causing the inner loop
to terminate immediately.
Similarly, you can use the break statement in the outer loop to
exit both the inner and outer loops prematurely if needed.

Here's a simple example demonstrating the usage of break in a nested for
loop:
Example: Using break in a nested for loop
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
for row in matrix:

for element in row:
print(element)
if element == 5:

break
else:

continue
break

Output:
1
2
3
4
5

In this example, the inner loop terminates prematurely when the element
variable becomes equal to 5 due to the break statement. The outer loop then
terminates immediately because of the break statement outside the inner
loop.

break while
In Python, you can use the break statement within a while loop to exit the
loop prematurely based on a certain condition. Here's how you can use the
break statement in a while loop:
Example: Using break in a while loop
while condition:

Code block
if condition:

break

In this syntax:

condition is the expression that determines whether the loop
should continue executing or not.
The while loop continues to execute as long as the condition
evaluates to True.

Inside the loop block, the if statement with condition checks if
a certain condition is met.
If the condition evaluates to True, the break statement is
executed, causing the loop to terminate immediately, and the
program execution continues from the statement immediately
following the loop.

Here's a simple example demonstrating the usage of break in a while loop:
Example: Using break in a while loop
i = 0
while i < 5:

print(i)
if i == 2:

break
i += 1

Output:
0
1
2

In this example, the loop terminates prematurely when i becomes equal to 2
due to the break statement.

6 Python continue
Introduction

In Python, the continue statement is used inside loops (such as for loops and
while loops) to skip the rest of the code inside the loop for the current
iteration and continue with the next iteration of the loop.
Here's a basic syntax of the continue statement:
for item in iterable:

Code block
if condition:

continue
More code

Or:

while condition:
Code block
if condition:

continue
More code

In this syntax:

iterable is the sequence or iterable object over which the loop
iterates in the case of a for loop, or condition is the expression
that determines whether the loop should continue executing in
the case of a while loop.
The if statement with condition inside the loop block checks if
a certain condition is met.
If the condition evaluates to True, the continue statement is
executed, causing the rest of the code inside the loop for the
current iteration to be skipped, and the loop proceeds to the
next iteration.

Here's a simple example demonstrating the usage of the continue statement
in a for loop:
Example: Using continue in a for loop
for i in range(5):

if i == 2:
continue

print(i)

Output:
0
1
3
4

In this example, when i becomes equal to 2, the continue statement is
executed, and the rest of the code inside the loop for that iteration (i.e.,
print(i)) is skipped. The loop proceeds to the next iteration.

Syntax
In Python, the continue statement is used within loops (such as for loops
and while loops) to skip the rest of the code inside the loop for the current
iteration and continue with the next iteration of the loop. The syntax for
using the continue statement varies slightly depending on the type of loop:
1 Using continue in a for loop:
for item in iterable:

Code block
if condition:

continue
More code

2 Using continue in a while loop:
while condition:

Code block
if condition:

continue
More code

In both cases:

iterable is the sequence or iterable object over which the loop
iterates in the case of a for loop, or condition is the expression
that determines whether the loop should continue executing in
the case of a while loop.

The if statement with condition inside the loop block checks if
a certain condition is met.
If the condition evaluates to True, the continue statement is
executed, causing the rest of the code inside the loop for the
current iteration to be skipped, and the loop proceeds to the
next iteration.

Here's a simple example demonstrating the usage of the continue statement
in both types of loops:
Example: Using continue in a for loop
for i in range(5):

if i == 2:
continue

print(i)

Example: Using continue in a while loop
i = 0
while i < 5:

if i == 2:
i += 1
continue

print(i)
i += 1

Output:
0
1
3
4
0
1
3
4

In both examples, when i becomes equal to 2, the continue statement is
executed, causing the rest of the code inside the loop for that iteration to be
skipped, and the loop proceeds to the next iteration.

continue for

To use the continue statement within a for loop in Python, you can place it
inside the loop's block to skip the remaining code for the current iteration
and move to the next iteration. Here's how you can use the continue
statement in a for loop:
Example: Using continue in a for loop
for item in iterable:

Code block
if condition:

continue
More code

In this syntax:

iterable is the sequence or iterable object over which the loop
iterates.
item is the loop variable that takes on the value of each item in
the iterable during each iteration.
The if statement with condition inside the loop block checks if
a certain condition is met.
If the condition evaluates to True, the continue statement is
executed, causing the rest of the code inside the loop for the
current iteration to be skipped, and the loop proceeds to the
next iteration.

Here's a simple example demonstrating the usage of the continue statement
in a for loop:
Example: Using continue in a for loop
fruits = ["apple", "banana", "cherry", "date"]
for fruit in fruits:

if fruit == "banana":
continue

print(fruit)

Output:
apple
cherry
date

In this example, when the fruit variable becomes equal to "banana", the
continue statement is executed, causing the rest of the code inside the loop
for that iteration to be skipped. The loop proceeds to the next iteration, and
the remaining fruits are printed.

continue while
To use the continue statement within a while loop in Python, you can place
it inside the loop's block to skip the remaining code for the current iteration
and move to the next iteration. Here's how you can use the continue
statement in a while loop:
Example: Using continue in a while loop
while condition:

Code block
if condition:

continue
More code

In this syntax:

condition is the expression that determines whether the loop
should continue executing.
The while loop continues to execute as long as the condition
evaluates to True.
Inside the loop block, the if statement with condition checks if
a certain condition is met.
If the condition evaluates to True, the continue statement is
executed, causing the rest of the code inside the loop for the
current iteration to be skipped, and the loop proceeds to the
next iteration.

Here's a simple example demonstrating the usage of the continue statement
in a while loop:

Example: Using continue in a while loop
i = 0
while i < 5:

i += 1
if i == 3:

continue
print(i)

Output:
1
2
4
5

In this example, when i becomes equal to 3, the continue statement is
executed, causing the rest of the code inside the loop for that iteration to be
skipped. The loop proceeds to the next iteration, and the remaining values
of i are printed.

Chapter 5 :
Functions

1 Python function
Introduction
In Python, a function is a block of reusable code that performs a specific
task. Functions provide a way to organize code into manageable pieces,
improve code reusability, and make the code more readable.
Here's the syntax to define and use a function in Python:
1 Defining a function:
def function_name(parameter1, parameter2, ...):

Function body
Code to perform the task
return result

def keyword is used to define a function.
function_name is the name of the function.
(parameter1, parameter2, ...) is the list of parameters (if any)
that the function accepts. Parameters are optional.
: colon indicates the beginning of the function body.
The function body consists of the code that performs the task.
return result statement (optional) is used to return a value from
the function. If there's no return statement, the function returns
None by default.

2 Using a function:
result = function_name(argument1, argument2, ...)

function_name is the name of the function to call.
(argument1, argument2, ...) is the list of arguments (if any) to
pass to the function. Arguments are optional.
The function is called with the specified arguments, and the
result (if any) is stored in the result variable.

Here's an example of defining and using a simple function in Python:
Function definition
def add_numbers(x, y):

Function body: adds two numbers
result = x + y
return result

Using the function
sum_result = add_numbers(3, 5)
print("Sum:", sum_result) # Output: Sum: 8

In this example:

We define a function add_numbers that takes two parameters x
and y, adds them together, and returns the result.
We call the function add_numbers with arguments 3 and 5, and
store the result in the variable sum_result.
We print the result to the console.

Parameters
In Python, function parameters are variables that are specified in the
function definition and are used to pass values to the function when it is
called. Parameters allow functions to accept input values and perform
operations on them.

Here's the syntax to define and use parameters in Python functions:
1 Defining parameters:
def function_name(parameter1, parameter2, ...):

Function body
Code that uses parameter1, parameter2, ...

def keyword is used to define a function.
function_name is the name of the function.
(parameter1, parameter2, ...) is the list of parameters that the
function accepts. Parameters are optional.
Each parameter in the list is a variable that holds the value
passed to the function.
Parameters are separated by commas.

2 Using parameters:
result = function_name(argument1, argument2, ...)

function_name is the name of the function to call.
(argument1, argument2, ...) is the list of arguments that are
passed to the function. Arguments are optional.
Arguments are the actual values that are passed to the function
when it is called.

The function uses these arguments to perform its task.

Here's an example demonstrating the usage of parameters in Python
functions:
Function definition with parameters
def greet(name):

Function body: greets the user with the provided name
print("Hello,", name, "!")

Using the function with an argument
greet("Alice") # Output: Hello, Alice!

In this example:

We define a function greet that takes a single parameter name.
When the function is called with the argument "Alice", the
value "Alice" is passed to the parameter name.
Inside the function, the parameter name holds the value
"Alice", and the function prints "Hello, Alice!" to the console.

Keyword Parameters
Keyword parameters (also known as keyword arguments) in Python are
parameters that are passed to a function by specifying their corresponding
parameter names along with the values. Keyword parameters allow you to
provide arguments to a function in any order, making the function call more
readable and flexible.

Here's the syntax to define and use keyword parameters in Python
functions:

1 Defining keyword parameters:
def function_name(param1=default_value1, param2=default_value2, ...):

Function body
Code that uses param1, param2, ...

def keyword is used to define a function.
function_name is the name of the function.

(param1=default_value1, param2=default_value2, ...) is the list
of parameters with their default values (if any). Keyword
parameters are optional.
Each parameter in the list is defined with its default value
using the syntax param=default_value.
Default values are used if no value is provided for the
corresponding parameter during the function call.

2 Using keyword parameters:
result = function_name(param1=value1, param2=value2, ...)

function_name is the name of the function to call.
param1=value1, param2=value2, etc., are the keyword
arguments passed to the function.
Each keyword argument consists of the parameter name
followed by the value assigned to it.
Keyword arguments can be provided in any order.

Here's an example demonstrating the usage of keyword parameters in
Python functions:
Function definition with keyword parameters
def greet(name, message="Hello"):

Function body: greets the user with the provided name and message
print(message, name, "!")

Using the function with keyword arguments
greet(message="Hi", name="Bob") # Output: Hi Bob!

In this example:

We define a function greet that takes two parameters: name
and message.
The parameter message has a default value "Hello".
When the function is called with keyword arguments
message="Hi" and name="Bob", these arguments are passed to
the corresponding parameters.
The function uses the provided values to print the greeting
message "Hi Bob!" to the console.

Default value
In Python, you can add default values to function parameters by specifying
the default values directly in the function definition. Here's the syntax to
add default values to function parameters:
def function_name(param1=default_value1, param2=default_value2, ...):

Function body
Code that uses param1, param2, ...

In this syntax:

param1=default_value1, param2=default_value2, etc., are the
parameters with their corresponding default values.
If no value is provided for a parameter during the function call,
the default value specified in the function definition is used.

Here's an example demonstrating how to add default values to function
parameters:
Function definition with default parameter values
def greet(name, message="Hello"):

Function body: greets the user with the provided name and message
print(message, name, "!")

Using the function without providing the default parameter value
greet("Alice") # Output: Hello Alice!

Using the function with providing a custom parameter value
greet("Bob", "Hi") # Output: Hi Bob!

In this example:

We define a function greet with two parameters: name and
message.
The parameter message has a default value "Hello".
When the function is called without providing a value for the
message parameter (greet("Alice")), the default value "Hello"
is used, and the function prints "Hello Alice!".
When the function is called with a custom value for the
message parameter (greet("Bob", "Hi")), the provided value

"Hi" is used instead of the default value, and the function
prints "Hi Bob!".

Return Values
In Python, you can return values from a function using the return statement.
The return statement is used to exit the function and specify the value(s)
that the function should return to the caller. Here's the syntax to return
values from a Python function:
def function_name(parameter1, parameter2, ...):

Function body
Code that performs the task
return value1, value2, ...

In this syntax:

def keyword is used to define a function.
function_name is the name of the function.
(parameter1, parameter2, ...) is the list of parameters that the
function accepts. Parameters are optional.
The return statement is used to exit the function and return one
or more values to the caller.
value1, value2, ... are the values that the function returns. You
can return multiple values separated by commas, or a single
value.

Here's an example demonstrating how to return values from a Python
function:
Function definition with parameters and return statement

def add_numbers(x, y):
Function body: adds two numbers
result = x + y
return result

Using the function and storing the returned value
sum_result = add_numbers(3, 5)
print("Sum:", sum_result) # Output: Sum: 8

In this example:

We define a function add_numbers that takes two parameters x
and y, adds them together, and returns the result using the
return statement.
When the function is called with arguments 3 and 5, the
function calculates the sum (3 + 5 = 8) and returns the result 8.
The returned value is stored in the variable sum_result, and we
print it to the console.

2 Python Function Recursion

Introduction
Function recursion in Python refers to the concept of a function calling
itself, either directly or indirectly. Recursion is a powerful technique used in
programming where a function solves a problem by breaking it down into
smaller, similar subproblems and calling itself to solve each subproblem.
Recursion continues until it reaches a base case, which is a simple case that
can be solved directly without further recursion.

Here's a basic example of a recursive function to calculate the factorial of a
number:
def factorial(n):

if n == 0:
return 1

else:

return n * factorial(n - 1)

Example usage
result = factorial(5)
print(result) # Output: 120 (5! = 5 * 4 * 3 * 2 * 1 = 120)

In this example:

The factorial function calculates the factorial of a non-negative
integer n.
The base case is when n is equal to 0, where the factorial is
defined as 1.
For any other value of n, the function recursively calls itself
with n - 1 until it reaches the base case.
The result is computed by multiplying n with the factorial of n
- 1.

Recursion is useful in situations where a problem can be divided into
smaller, identical subproblems that can be solved more easily. Common
examples include:
1 Tree-based problems: Problems involving trees, such as traversing a
binary tree or finding the height of a tree, are often naturally suited for
recursion.
2 Divide and conquer algorithms: Problems that can be divided into
smaller, similar subproblems, such as sorting algorithms like merge sort and
quicksort, can be efficiently solved using recursion.
3 Dynamic programming: Recursive solutions are often used in dynamic
programming to solve problems by breaking them down into overlapping
subproblems.

Recursion can make code more concise and elegant for certain types of
problems. However, it can also lead to performance issues and stack
overflow errors if not implemented carefully, especially for problems with
deep recursion or overlapping subproblems. In such cases, iteration or other
optimization techniques may be preferred.

Pros and cons
Recursion and iteration are both techniques used in programming to solve
problems, and each has its own set of advantages and disadvantages. Here
are some pros and cons of recursion and iteration in Python:

Recursion:
Pros:
1 Elegant solution: Recursion often leads to concise and elegant
solutions for problems that can be divided into smaller, identical
subproblems.
2 Readability: Recursive solutions closely mimic the problem's
definition, making the code easier to understand and maintain, especially
for problems involving tree structures or mathematical sequences.
3 Divide and conquer: Recursion is well-suited for divide-and-conquer
algorithms, where a problem can be broken down into smaller, similar
subproblems that are easier to solve.

Cons:
1 Performance overhead: Recursive function calls involve additional
overhead, such as function call stack management, which can lead to slower
execution compared to iterative solutions, especially for deep recursion.
2 Stack overflow: Recursive solutions can lead to stack overflow errors if
not implemented carefully, particularly for problems with deep recursion or
when the base case is not reached.
3 Difficulty in debugging: Recursive functions can be more difficult to
debug due to their indirect nature, making it challenging to trace the
execution flow.

Iteration:
Pros:
1 Efficiency: Iterative solutions often have better performance compared
to recursive solutions, especially for problems with large inputs or deep
recursion levels, as they typically involve less overhead.
2 Control over execution: Iteration provides more explicit control over
the execution flow, making it easier to understand and debug, particularly
for complex algorithms.
3 Tail optimization: Some programming languages, including Python,
support tail call optimization, which allows certain tail-recursive functions
to be optimized into iterative form, eliminating the risk of stack overflow.

Cons:
1 Complexity: Iterative solutions can sometimes be more complex and
less intuitive, especially for problems that naturally lend themselves to
recursive solutions.
2 Verbose code: Iterative solutions may require more lines of code and
additional variables to maintain loop state, leading to less concise code
compared to recursive solutions for certain problems.
3 Difficulty with certain problems: Some problems may be inherently
difficult to solve iteratively, especially those involving tree traversal or
backtracking, where recursion provides a more natural and intuitive
approach.

In summary, both recursion and iteration have their advantages and
disadvantages, and the choice between them depends on factors such as
problem complexity, performance requirements, and personal preference.
While recursion often leads to elegant and concise solutions for certain
problems, iteration may offer better performance and explicit control over
execution flow in others. It's essential to consider these factors when
deciding which approach to use in a given situation.

Sum
You can find the sum of natural numbers using recursion in Python with a
function that calls itself until reaching the base case. Here's how you can do
it:
def sum_of_natural_numbers(n):

if n <= 1:
return n

else:
return n + sum_of_natural_numbers(n - 1)

Test the function
n = 5
print("Sum of first", n, "natural numbers is:", sum_of_natural_numbers(n))

In this code:

The base case is when n becomes 1 or less, in which case we
return n.
Otherwise, we return n plus the sum of natural numbers from 1
to n-1, which we obtain by calling the function recursively
with n-1.
The function keeps calling itself with decreasing values of n
until it reaches the base case, at which point the recursion
stops.

String Reverse
You can reverse a string using recursion in Python by recursively swapping
the characters at the beginning and end of the string until the entire string is
reversed. Here's how you can implement it:
def reverse_string(s):

if len(s) <= 1:
return s

else:
return reverse_string(s[1:]) + s[0]

Test the function
input_string = "hello"

print("Original string:", input_string)
print("Reversed string:", reverse_string(input_string))

In this code:

The base case is when the length of the string is less than or
equal to 1. In this case, the string itself is returned.
Otherwise, the function returns the result of recursively calling
reverse_string on the substring starting from the second
character (s[1:]) and then appending the first character (s[0]) at
the end.
The function keeps calling itself with substrings until it
reaches the base case, at which point the recursion stops and
the reversed string is constructed.

Chapter 6 :
Object Oriented

1 Python Modules
Introduction
A Python module is a file containing Python code, which can define
functions, classes, and variables. The purpose of a Python module is to
organize related code into a reusable and shareable unit. Modules provide a
way to structure large Python projects into smaller, manageable
components, making it easier to maintain, test, and collaborate on code.

Here are some key purposes and benefits of using Python modules:
1 Code Organization: Modules help organize code by grouping related
functionality together. This makes it easier to understand and maintain the
codebase.

2 Encapsulation: Modules provide a way to encapsulate code into
separate namespaces. This helps prevent naming conflicts and allows you to
use the same names for variables and functions in different modules without
causing conflicts.

3 Reusability: Modules can be reused in multiple projects or within the
same project. Once defined, a module can be imported into other Python
scripts or modules, allowing you to reuse code without duplication.

4 Abstraction: Modules allow you to abstract away implementation
details and expose only the necessary interfaces to users. This promotes a
clean and modular design, where each module can be treated as a black box
with well-defined inputs and outputs.

5 Scoping: Modules define their own scope, which helps avoid polluting
the global namespace. Variables and functions defined within a module are
accessible only within that module unless explicitly imported or exported.

6 Namespacing: Modules provide a way to organize and manage
namespaces in Python. Each module has its own namespace, which helps
avoid naming conflicts and provides a clean separation of concerns.

Overall, Python modules play a crucial role in structuring and organizing
Python code, promoting modularity, reusability, and maintainability. They
enable developers to build complex applications by breaking them down
into smaller, more manageable components.

Create
To create a Python module, you simply need to create a Python file (.py)
containing the code you want to include in the module. Here's a step-by-
step guide on how to create a Python module:

1 Create a Python File: Create a new file with a .py extension. This file
will contain the code for your module. For example, you can name it
mymodule.py.

2 Write Module Code: Write the Python code for your module in the
created file. This can include function definitions, class definitions, variable
assignments, and any other Python code you want to include in the module.

3 Define Module Interface: Decide which functions, classes, and
variables you want to make accessible to users of your module. These will
be the public interface of your module.

4 Save the File: Save the Python file containing your module code.

5 Use the Module: You can now import and use your module in other
Python scripts or modules by using the import statement.

Here's an example of a simple Python module named mymodule.py:
mymodule.py

def greet(name):
return f"Hello, {name}!"

def add(a, b):
return a + b

PI = 3.14159

To use this module in another Python script, you would import it like this:
main.py

import mymodule

print(mymodule.greet("Alice")) # Output: Hello, Alice!
print(mymodule.add(2, 3)) # Output: 5
print(mymodule.PI) # Output: 3.14159

As for the file/folder structure convention for a Python module, it's common
practice to organize related modules into packages. A package is a directory
that contains one or more Python modules and an __init__.py file. Here's an
example of a typical file/folder structure for a Python module:

In this structure:

my_package is the top-level package directory.
__init__.py files indicate that the directories are Python
packages and can contain module code.
module1.py and module2.py are Python modules directly
within the my_package package.
subpackage is a subpackage directory within the my_package
package.
submodule1.py and submodule2.py are Python modules within
the subpackage subpackage.

This structure allows you to organize your modules into logical groups and
namespaces, making it easier to manage and maintain larger codebases.

import Syntax
In Python, the import statement is used to include various Python modules
into your code. There are several syntaxes you can use depending on what
you want to achieve:
1 Importing the entire module:
import module_name

Example:
import math

2 Importing with an alias:
import module_name as alias

Example:
import numpy as np

3 Importing specific attributes from a module:
from module_name import attribute_name1, attribute_name2, ...

Example:
from math import sqrt, pi

4 Importing all attributes from a module:
from module_name import *

This imports all attributes defined in the module, but it's generally
discouraged because it can lead to namespace pollution and make it unclear
where certain functions or classes come from.
Example:
from math import
*

5 Importing a submodule:
import package_name.module_name

Example:
import matplotlib.pyplot as plt

These are the primary ways to use the import statement in Python. Each has
its use case depending on the requirements of your program and your
coding style preferences.

import all function
To import all functions and attributes from a module in Python, you can use
the * wildcard character with the import statement. However, it's generally
discouraged because it can lead to namespace pollution and make it unclear
where certain functions or classes come from.
Here's how you can import all functions from a module:
from module_name import *

Replace module_name with the name of the module you want to import
from.
Example:
from math import
*

This imports all functions and attributes from the math module into the
current namespace. However, it's recommended to import only the specific
functions or attributes you need from a module to keep your code clean and
avoid potential naming conflicts.

Alias
In Python, you can give a module, a function, or a class an alias using the as
keyword. This is particularly useful when you want to shorten long module
names, clarify the purpose of a function or class, or avoid naming conflicts.
Here's how you can use as to give an alias:
1 Alias for a module:
import module_name as alias

Example:
import numpy as np

2 Alias for a function or a class:
from module_name import function_name_or_class_name as alias

Example:
from math import sqrt as square_root

In the above examples, np is an alias for the numpy module, and
square_root is an alias for the sqrt function from the math module.
Using aliases can make your code more readable and concise, especially
when dealing with long module names or when you need to clarify the
purpose of certain functions or classes.
Importing Specific Functions
You can import specific Python functions using the import statement along
with the from keyword. Here's the syntax:
from module_name import function_name1, function_name2, ...

Replace module_name with the name of the module containing the
functions you want to import, and list the function names you want to
import separated by commas.

Example:
Let's say you want to import the sqrt and cos functions from the math
module:
from math import sqrt, cos

Now you can use these functions directly in your code without prefixing
them with the module name:
print(sqrt(4)) # Output: 2.0
print(cos(0)) # Output: 1.0

This syntax is useful when you only need specific functions from a module
and don't want to import the entire module. It can also make your code
more readable by clearly indicating which functions are being used.

Importing Classes
To import classes from a module in Python, you can use the import
statement along with the from keyword, similar to how you import
functions. Here's the syntax:
from module_name import ClassName1, ClassName2, ...

Replace module_name with the name of the module containing the classes
you want to import, and list the class names you want to import separated
by commas.
Example:
Let's say you have a module named my_module containing two classes Dog
and Cat, and you want to import both classes:
from my_module import Dog, Cat

Now you can create objects of these classes directly in your code:

my_dog = Dog("Buddy")
my_cat = Cat("Whiskers")

This syntax is useful when you only need specific classes from a module
and don't want to import the entire module. It can also make your code
more readable by clearly indicating which classes are being used.
Importing Multiple Classes
To import multiple classes from a Python module, you can use the from
keyword followed by the module name, and then list the class names you
want to import, separated by commas. Here's the syntax:
from module_name import ClassName1, ClassName2, ...

Replace module_name with the name of the module containing the classes
you want to import, and list the class names you want to import separated
by commas.

Example:

Let's say you have a module named my_module containing two classes Dog
and Cat, and you want to import both classes:
from my_module import Dog, Cat

Now you can create objects of these classes directly in your code:
my_dog = Dog("Buddy")
my_cat = Cat("Whiskers")

This syntax allows you to import multiple classes from a module in a single
line, making your code more concise and readable.
Importing an Entire Module
If you want to import an entire module from another Python module, you
can use the simple import statement. Here's how:
import module_name

Replace module_name with the name of the module you want to import.

Example:
Let's say you have a module named my_module and you want to import the
entire module:
import my_module

After importing, you can access anything defined in my_module by
prefixing it with my_module. For example:
my_module.some_function()
my_instance = my_module.SomeClass()

This approach imports the entire module, including all functions, classes,
variables, etc. It's the simplest way to import an entire module, but it can
lead to namespace pollution if the module contains a lot of definitions.

Importing All Classes

To import all classes from a Python module, you can use the from keyword
with the * wildcard character. Here's the syntax:
from module_name import *

Replace module_name with the name of the module containing the classes
you want to import.

Example:
Let's say you have a module named my_module containing several classes
(Class1, Class2, etc.), and you want to import all of them:
from my_module import *

After this import statement, you can directly use any class defined in
my_module without prefixing it with my_module. For example:
obj1 =
Class1()
obj2 =
Class2()

However, be cautious when using this approach because it can lead to
namespace pollution and make it unclear where certain classes come from,
especially if the module contains a large number of classes. It's generally
recommended to import specific classes or use an alias to avoid these
issues.
Importing a Module
To import a module into another Python module, you can use the import
statement. Here's the syntax:
import module_name

Replace module_name with the name of the module you want to import.
Example:
Let's say you have two Python modules, module1.py and module2.py, and
you want to import module1 into module2:
In module2.py:

import module1

After importing, you can access anything defined in module1 by prefixing it
with module1. For example:
module1.some_function()

If you want to access specific attributes (functions, classes, variables) from
module1, you can do so by directly referencing them after importing:
from module1 import some_function, SomeClass

some_function()
obj = SomeClass()

This imports only some_function and SomeClass from module1, making
them accessible directly without prefixing with module1..

Alternatively, if you want to import all attributes from module1 into
module2, you can use the * wildcard character:
from module1 import *

However, be cautious when using this approach as it can lead to namespace
pollution and make it unclear where certain attributes come from. It's
generally recommended to import specific attributes or use an alias to avoid
these issues.

2 Python class
Introduction

In Python, a class is a blueprint for creating objects (instances). It defines
the properties (attributes) and behaviors (methods) that all objects created
from it will have. Classes are fundamental to object-oriented programming
(OOP), a programming paradigm that models real-world entities as objects
with attributes and behaviors.

Here's a breakdown of key concepts related to Python classes:
1 Attributes: These are variables that store data associated with the class
or its instances.

2 Methods: These are functions defined within a class that can perform
operations on the class's data.

3 Instances: These are individual objects created from a class. Each
instance has its own set of attributes and can call the class's methods.

4 Inheritance: This is a feature of OOP that allows a class (called a
subclass or derived class) to inherit attributes and methods from another
class (called a superclass or base class). It promotes code reusability and
allows for creating specialized classes based on existing ones.

When do we need Python classes
1 Encapsulation: Classes allow you to encapsulate data and functionality
together. This means that data and the operations that manipulate it are
bundled together within the class, promoting modularity and making the
code easier to understand and maintain.

2 Abstraction: Classes provide a way to model real-world entities with
their attributes and behaviors. They abstract away the details of
implementation and allow you to work with higher-level concepts.

3 Code Reusability: By defining classes and using inheritance, you can
reuse code across different parts of your program. This promotes code
organization, reduces redundancy, and makes it easier to manage complex
systems.

4 Polymorphism: Classes support polymorphism, which allows different
objects to be treated as instances of the same class, even if they are of
different types. This promotes flexibility and makes it easier to work with
heterogeneous collections of objects.

In summary, Python classes are essential for building modular,
maintainable, and scalable software. They provide a way to structure code,
encapsulate data and behavior, promote code reuse, and model real-world
entities in a flexible and understandable manner.

__init__()
In Python, __init__() is a special method (also known as a constructor) that
is automatically called when a new instance of a class is created. It is used
to initialize the attributes of the newly created object. The __init__()
method is optional, but it is commonly used to set up the initial state of an
object.

Here's the syntax for defining the __init__() method within a class:
class ClassName:

def __init__(self, parameter1, parameter2, ...):
Initialization code here

In the __init__() method:

self: The first parameter of the __init__() method is always
self, which refers to the current instance of the class. It is used
to access the attributes and methods of the instance within the
class.

parameter1, parameter2, ...: These are the parameters that you
want to pass when creating an instance of the class. You can
define any number of parameters here, depending on the
initialization requirements of your class.

Here's an example to illustrate the usage of the __init__() method:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

Creating instances of the Person class
person1 = Person("Alice", 30)
person2 = Person("Bob", 25)

Accessing attributes of the instances
print(person1.name) # Output: Alice
print(person1.age) # Output: 30

print(person2.name) # Output: Bob
print(person2.age) # Output: 25

In this example, the __init__() method initializes the name and age
attributes of each Person object when it is created. When you create a new
Person object (person1 and person2), you provide values for name and age,
which are then assigned to the corresponding attributes of the object.

Instance
To make an instance from a Python class, you need to follow these steps:
1 Define the class: Define the blueprint for the objects you want to create
by writing a class definition.

2 Instantiate the class: Use the class name followed by parentheses () to
create an instance of the class.

Here's a simple example:
Define the class
class MyClass:

def __init__(self, parameter1, parameter2):
self.parameter1 = parameter1
self.parameter2 = parameter2

Instantiate the class
my_instance = MyClass(value1, value2)

Let's break down this example:

We define a class named MyClass.
Inside the class, there is an __init__() method that initializes
the instance attributes (parameter1 and parameter2) with the
values passed as arguments.
We then create an instance of MyClass by calling
MyClass(value1, value2). This invokes the __init__() method
with the specified values for parameter1 and parameter2,
creating a new instance of the class.
The newly created instance is assigned to the variable
my_instance.

Now, you can use my_instance to access the attributes and methods of the
MyClass object:

print(my_instance.parameter1)
print(my_instance.parameter2)

Replace value1 and value2 with the values you want to initialize the
instance with. This is how you make an instance from a Python class.

Attributes
To access an attribute from a Python class, you use dot notation (.) followed
by the attribute name. Here's how you do it:
1 First, you need to create an instance of the class.
2 Then, you can use dot notation to access the attributes of

that instance.
Here's an example:
class MyClass:

def __init__(self, attribute):
self.attribute = attribute

Create an instance of MyClass
my_instance = MyClass("value")

Access the attribute using dot notation
print(my_instance.attribute)

In this example:

We define a class named MyClass with an __init__() method
that initializes an attribute (self.attribute) with the value passed
as an argument.
We create an instance of MyClass called my_instance and pass
the value "value" to the constructor.
We then use dot notation (my_instance.attribute) to access the
value of the attribute attribute of the my_instance object.

This will print "value", which is the value assigned to the attribute attribute
of the my_instance object.

Calling Methods
To call methods defined in a Python class, you follow these steps:
1 Create an instance of the class.
2 Use dot notation (.) followed by the method name to call the method on
that instance.

Here's a simple example:
class MyClass:

def __init__(self, attribute):
self.attribute = attribute

def my_method(self):
print("Hello from my_method!")

Create an instance of MyClass
my_instance = MyClass("value")

Call the method using dot notation
my_instance.my_method()

In this example:

We define a class named MyClass with an __init__() method
that initializes an attribute (self.attribute) with the value passed
as an argument, and a my_method() method.
We create an instance of MyClass called my_instance and pass
the value "value" to the constructor.
We then call the my_method() method on the my_instance
object using dot notation (my_instance.my_method()).

This will print "Hello from my_method!", indicating that the method has
been called successfully on the instance of the class.

3 Python class Inheritance
Introduction
Class inheritance in Python allows a class (subclass) to inherit attributes and
methods from another class (superclass). This means that the subclass can
access and use the attributes and methods of the superclass without
redefining them. Inheritance creates a parent-child relationship between
classes, where the subclass inherits the characteristics of the superclass and
can also have its own additional attributes and methods.
Syntax for Class Inheritance:
class Superclass:

Attributes and methods

class Subclass(Superclass):
Additional attributes and methods

In the above syntax:

Subclass is the subclass that inherits from Superclass.
Subclass can access all attributes and methods of Superclass
and can also define its own additional attributes and methods.

When and Why Do We Need Inheritance
1 Code Reusability: Inheritance allows you to reuse code by defining
common attributes and methods in a superclass. Subclasses can then inherit
these common characteristics without having to redefine them, reducing
code duplication.

2 Modularity and Extensibility: Inheritance promotes modularity by
organizing code into logical hierarchies. Subclasses can extend the
functionality of the superclass by adding new methods or overriding
existing ones, thus providing flexibility and extensibility to the codebase.

3 Abstraction and Encapsulation: Inheritance helps in creating abstract
classes that define a common interface or behavior for a group of related
classes. It allows you to encapsulate common functionality in the
superclass, making the code more manageable and understandable.

4 Polymorphism: Inheritance facilitates polymorphism, which allows
objects of different classes to be treated uniformly based on their common
superclass. This enables you to write code that operates on objects of the
superclass type but can also handle objects of the subclass type, providing
flexibility and code reuse.

5 Specialization: Subclasses can specialize or customize the behavior of
the superclass by adding new functionality or modifying existing
functionality. This allows you to tailor classes to specific requirements
while maintaining a consistent interface across related classes.

Overall, inheritance is a powerful mechanism in object-oriented
programming that promotes code reuse, modularity, and extensibility,

making it easier to manage and maintain complex systems. However, it
should be used judiciously to avoid creating overly complex class
hierarchies and tight coupling between classes.

Syntax
In Python, creating inheritance between classes involves defining a new
class that inherits from an existing class. Here's the syntax to create
inheritance in Python:
class BaseClass:

Attributes and methods of the base class

class DerivedClass(BaseClass):
Additional attributes and methods of the derived class

In the above syntax:

BaseClass is the name of the existing class from which you
want to inherit.
DerivedClass is the name of the new class that you're creating,
which will inherit from BaseClass.
DerivedClass is said to be a subclass of BaseClass, and
BaseClass is said to be the superclass or parent class of
DerivedClass.

By inheriting from BaseClass, DerivedClass gains access to all the
attributes and methods defined in BaseClass. Additionally, you can define
new attributes and methods specific to DerivedClass within its own class
definition.

Here's an example to illustrate inheritance in Python:
class Animal:

def sound(self):
print("Some generic sound")

class Dog(Animal): # Dog inherits from Animal
def sound(self):

print("Woof")

class Cat(Animal): # Cat inherits from Animal
def sound(self):

print("Meow")

Create instances of subclasses
dog = Dog()
cat = Cat()

Call methods from the superclass and subclasses
dog.sound() # Output: Woof
cat.sound() # Output: Meow

In this example, Dog and Cat are subclasses of Animal. They inherit the
sound() method from Animal but provide their own implementation of the
method. When you call sound() on instances of Dog and Cat, it prints the
sound specific to each subclass.

__init__()
To define and use the __init__() method for a child class (subclass) in
Python inheritance, you can override the __init__() method of the parent
class (superclass). This allows you to customize the initialization process
for instances of the child class while still leveraging the initialization logic
of the parent class if needed. Here's how you can do it:
class ParentClass:

def __init__(self, parent_attribute):
self.parent_attribute = parent_attribute
print("ParentClass initialized with:", self.parent_attribute)

class ChildClass(ParentClass):
def __init__(self, parent_attribute, child_attribute):

Call the __init__() method of the parent class
super().__init__(parent_attribute)
self.child_attribute = child_attribute
print("ChildClass initialized with:", self.child_attribute)

Create an instance of the child class
child_obj = ChildClass("Parent Data", "Child Data")

In the above example:

ParentClass defines an __init__() method that initializes an
attribute parent_attribute.
ChildClass is a subclass of ParentClass and defines its own
__init__() method.
Inside ChildClass's __init__() method,
super().__init__(parent_attribute) calls the __init__() method
of the parent class (ParentClass) to initialize the
parent_attribute.
After initializing the parent attribute, the __init__() method of
ChildClass initializes its own attribute child_attribute.
When you create an instance of ChildClass, both ParentClass's
and ChildClass's __init__() methods are called, in the order
defined in the inheritance hierarchy.

This approach ensures that the initialization logic defined in the parent class
is executed before the initialization logic of the child class, allowing for
proper initialization of attributes in both classes.

Overriding Methods
In Python, you can override methods from the parent class in a child class
by defining a method with the same name in the child class. When an

instance of the child class calls the method, the overridden method in the
child class will be executed instead of the method from the parent class.
Here's how you can override methods from the parent class in Python:

class ParentClass:
def some_method(self):

print("This is a method from ParentClass")

class ChildClass(ParentClass):
def some_method(self):

print("This is an overridden method from ChildClass")

Create an instance of the child class
child_obj = ChildClass()

Call the overridden method
child_obj.some_method() # Output: This is an overridden method from ChildClass

In the above example:

ParentClass defines a method called some_method().
ChildClass is a subclass of ParentClass and defines its own
version of the some_method() method.
When you call some_method() on an instance of ChildClass, it
calls the overridden method from ChildClass, not the method
from ParentClass.

This demonstrates how you can override methods from the parent class in
Python. Overriding methods allows child classes to provide their own
implementations of methods inherited from the parent class, providing
flexibility and customization in object-oriented programming.

4 Python Abstract Base Classes
Introduction
Abstract Base Classes (ABCs) in Python are classes that cannot be
instantiated directly but are meant to be subclassed. They define a set of
abstract methods that must be implemented by concrete subclasses. ABCs
provide a way to define a common interface or behavior for a group of
related classes while enforcing a contract that specifies which methods must
be implemented by subclasses.

To use Abstract Base Classes in Python, you need to import the abc module
from the standard library, which provides the ABC class and other utilities
for defining and working with abstract classes. Here's how you can define
and use Abstract Base Classes in Python:

from abc import ABC, abstractmethod

class Shape(ABC):
@abstractmethod
def area(self):

pass

@abstractmethod
def perimeter(self):

pass

class Rectangle(Shape):
def __init__(self, length, width):

self.length = length
self.width = width

def area(self):
return self.length * self.width

def perimeter(self):
return 2 * (self.length + self.width)

Attempting to instantiate the Shape class directly will raise an error
shape = Shape() # This will raise TypeError: Can't instantiate abstract class Shape with abstract
methods area, perimeter

Instantiate a subclass of Shape
rectangle = Rectangle(5, 4)
print("Area:", rectangle.area()) # Output: 20

print("Perimeter:", rectangle.perimeter()) # Output: 18

In the above example:

Shape is an abstract base class that defines two abstract
methods: area() and perimeter().
The abstractmethod decorator from the abc module is used to
mark these methods as abstract, indicating that they must be
implemented by concrete subclasses.
Rectangle is a concrete subclass of Shape that implements both
area() and perimeter() methods.
You cannot instantiate the Shape class directly because it is
abstract and contains abstract methods. Attempting to do so
will raise a TypeError.
You can instantiate Rectangle, which is a concrete subclass of
Shape, and use its methods.

Abstract Base Classes provide a way to define a common interface or
behavior for a group of related classes, ensuring that subclasses implement
the required methods. They are useful for enforcing contracts and
promoting code clarity and maintainability in object-oriented programming.

ABC as concept
Abstract classes in Python serve as templates for other classes. They are not
meant to be instantiated directly but instead are designed to be subclassed.
Abstract classes define a blueprint for how subclasses should be structured

and what methods they should implement. They typically contain one or
more abstract methods, which are methods that are declared but not
implemented in the abstract class itself. Subclasses must provide concrete
implementations for these abstract methods.

Here's how to understand abstract classes as a concept in Python:
1 Cannot be instantiated directly: Abstract classes cannot be
instantiated directly because they contain one or more abstract methods that
are not implemented. Attempting to create an instance of an abstract class
will result in an error.

2 Provide a template for subclasses: Abstract classes provide a blueprint
or template for how subclasses should be structured. They define common
methods or attributes that subclasses are expected to implement or use.

3 Contain one or more abstract methods: Abstract methods are
methods declared in an abstract class but not implemented. They serve as
placeholders for methods that must be implemented by subclasses.
Subclasses must provide concrete implementations for these abstract
methods.

4 Enforce a contract: Abstract classes enforce a contract between the
abstract class and its subclasses. Subclasses must adhere to the interface
defined by the abstract class, implementing all abstract methods to fulfill
the contract.

5 Promote code reuse and maintainability: Abstract classes promote
code reuse by providing a common interface or behavior that can be shared
among multiple subclasses. They help in organizing code and promoting
maintainability by defining a clear structure for subclasses to follow.

Overall, abstract classes in Python provide a powerful mechanism for
defining common interfaces and promoting code clarity, reusability, and
maintainability. They encourage good design practices by enforcing

contracts between classes and facilitating the creation of well-structured
object-oriented systems.

ABC subclass
Subclassing an Abstract Base Class (ABC) in Python involves creating a
new class that inherits from the ABC and provides concrete
implementations for its abstract methods. This allows you to define a
common interface or behavior specified by the ABC and ensure that
subclasses adhere to this interface by implementing the required methods.
Here's how you can subclass an ABC and use it in Python:

1 Defining an ABC: First, you define an abstract base class by
subclassing ABC from the abc module and using the @abstractmethod
decorator to mark methods as abstract.

2 Creating concrete subclasses: Then, you create concrete subclasses
that inherit from the ABC and provide implementations for its abstract
methods.

3 Using the subclasses: Finally, you can instantiate and use the concrete
subclasses, which now adhere to the interface defined by the ABC.

Here's an example illustrating subclassing an ABC in Python:
from abc import ABC, abstractmethod

class Shape(ABC):
@abstractmethod
def area(self):

pass

@abstractmethod
def perimeter(self):

pass

class Rectangle(Shape):
def __init__(self, length, width):

self.length = length
self.width = width

def area(self):
return self.length * self.width

def perimeter(self):
return 2 * (self.length + self.width)

class Circle(Shape):
def __init__(self, radius):

self.radius = radius

def area(self):
return 3.14 * self.radius ** 2

def perimeter(self):
return 2 * 3.14 * self.radius

Create instances of concrete subclasses
rectangle = Rectangle(5, 4)
circle = Circle(3)

Use the concrete subclasses
print("Rectangle Area:", rectangle.area()) # Output: 20
print("Rectangle Perimeter:", rectangle.perimeter()) # Output: 18
print("Circle Area:", circle.area()) # Output: 28.26
print("Circle Circumference:", circle.perimeter()) # Output: 18.84

In this example:

Shape is an abstract base class (ABC) that defines two abstract
methods: area() and perimeter().
Rectangle and Circle are concrete subclasses of Shape that
provide implementations for the abstract methods.
Both subclasses adhere to the interface defined by the Shape
ABC, ensuring that they provide area() and perimeter()
methods.
You can instantiate and use instances of the concrete
subclasses, which now have well-defined behavior specified
by the ABC.

5 Python Operator Overloading
Introduction
Operator overloading in Python refers to the ability to redefine the behavior
of built-in operators (+, -, *, /, etc.) for user-defined objects. By overloading
operators, you can customize how objects of a class behave when operated
with built-in operators, allowing for more natural and intuitive syntax.

To use operator overloading in Python, you need to define special methods,
also known as magic methods or dunder methods (due to their double
underscore prefix and suffix), that correspond to the operators you want to
overload. These special methods are automatically called when the
corresponding operator is used with objects of your class.

Here's an example of how to use operator overloading in Python:
class Point:

def __init__(self, x, y):
self.x = x
self.y = y

def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)

def __sub__(self, other):
return Point(self.x - other.x, self.y - other.y)

def __mul__(self, scalar):
return Point(self.x * scalar, self.y * scalar)

def __str__(self):
return f"({self.x}, {self.y})"

Create two Point objects
p1 = Point(1, 2)
p2 = Point(3, 4)

Use the overloaded operators
print("Addition:", p1 + p2) # Output: (4, 6)
print("Subtraction:", p1 - p2) # Output: (-2, -2)
print("Scalar multiplication:", p1 * 2) # Output: (2, 4)

In this example:

We define a Point class to represent 2D points with x and y
coordinates.
We overload the +, -, and * operators by defining special
methods __add__, __sub__, and __mul__, respectively.
When we use the +, -, and * operators with Point objects,
Python automatically calls the corresponding special methods.
We also define a __str__ method to customize the string
representation of Point objects when using print().

Operator overloading allows you to write more expressive and concise code
by providing natural syntax for operations on user-defined objects. It's a
powerful feature of Python's object-oriented programming model that
enables customization of behavior to suit the needs of your classes.

Addition
To overload the addition operator (+) for numerical operations in Python,
you need to define the special method __add__() within your class. This
method will be automatically called when the addition operator is used with
instances of your class. Here's how to overload the addition operator for
numerical operations in Python:
class Number:

def __init__(self, value):
self.value = value

def __add__(self, other):
Check if 'other' is an instance of Number
if isinstance(other, Number):

If 'other' is an instance of Number, perform addition
return Number(self.value + other.value)

else:
If 'other' is not an instance of Number, raise TypeError
raise TypeError("Unsupported operand type(s) for +: '{}' and

'{}'".format(
type(self).__name__, type(other).__name__))

def __str__(self):
return str(self.value)

Create instances of Number

num1 = Number(5)
num2 = Number(10)

Use the overloaded addition operator
result = num1 + num2
print("Result:", result) # Output: 15

In this example:

We define a Number class that represents a numerical value.
We define the __add__() special method, which will be called
when the addition operator (+) is used with instances of the
Number class.
Inside the __add__() method, we check if the other operand is
an instance of the Number class. If it is, we perform the
addition of the values and return a new Number object with the
result.
If the other operand is not an instance of the Number class, we
raise a TypeError to indicate that the operation is not
supported.
We define a __str__() method to provide a string
representation of Number objects when they are printed.

You can now use the addition operator (+) with instances of the Number
class, and Python will automatically call the __add__() method to perform
the addition operation.

Subtraction
To overload the subtraction operator (-) for numerical operations in Python,
you need to define the special method __sub__() within your class. This
method will be automatically called when the subtraction operator is used
with instances of your class. Here's how to overload the subtraction
operator for numerical operations in Python:
class Number:

def __init__(self, value):
self.value = value

def __sub__(self, other):

Check if 'other' is an instance of Number
if isinstance(other, Number):

If 'other' is an instance of Number, perform subtraction
return Number(self.value - other.value)

else:
If 'other' is not an instance of Number, raise TypeError
raise TypeError("Unsupported operand type(s) for -: '{}' and

'{}'".format(
type(self).__name__, type(other).__name__))

def __str__(self):
return str(self.value)

Create instances of Number
num1 = Number(10)
num2 = Number(5)

Use the overloaded subtraction operator
result = num1 - num2
print("Result:", result) # Output: 5

In this example:

We define a Number class that represents a numerical value.
We define the __sub__() special method, which will be called
when the subtraction operator (-) is used with instances of the
Number class.
Inside the __sub__() method, we check if the other operand is
an instance of the Number class. If it is, we perform the
subtraction of the values and return a new Number object with
the result.
If the other operand is not an instance of the Number class, we
raise a TypeError to indicate that the operation is not
supported.
We define a __str__() method to provide a string
representation of Number objects when they are printed.

You can now use the subtraction operator (-) with instances of the Number
class, and Python will automatically call the __sub__() method to perform
the subtraction operation.

Multiplication
To overload the multiplication operator (*) for numerical operations in
Python, you need to define the special method __mul__() within your class.
This method will be automatically called when the multiplication operator
is used with instances of your class. Here's how to overload the
multiplication operator for numerical operations in Python:
class Number:

def __init__(self, value):
self.value = value

def __mul__(self, other):
Check if 'other' is an instance of Number
if isinstance(other, Number):

If 'other' is an instance of Number, perform multiplication
return Number(self.value * other.value)

else:
If 'other' is not an instance of Number, raise TypeError
raise TypeError("Unsupported operand type(s) for *: '{}' and

'{}'".format(
type(self).__name__, type(other).__name__))

def __str__(self):
return str(self.value)

Create instances of Number
num1 = Number(5)
num2 = Number(10)

Use the overloaded multiplication operator
result = num1 * num2
print("Result:", result) # Output: 50

In this example:

We define a Number class that represents a numerical value.
We define the __mul__() special method, which will be called
when the multiplication operator (*) is used with instances of
the Number class.
Inside the __mul__() method, we check if the other operand is
an instance of the Number class. If it is, we perform the

multiplication of the values and return a new Number object
with the result.
If the other operand is not an instance of the Number class, we
raise a TypeError to indicate that the operation is not
supported.
We define a __str__() method to provide a string
representation of Number objects when they are printed.

You can now use the multiplication operator (*) with instances of the
Number class, and Python will automatically call the __mul__() method to
perform the multiplication operation.

Chapter 7 :
Advanced

1 Python File

Access Modes
Python file access modes are used to specify the mode in which a file is
opened. Each mode determines the operations that can be performed on the
file, such as reading, writing, appending, or creating a new file. Here are the
commonly used file access modes in Python:
1 'r': Open for reading (default). If the file does not exist or cannot be
opened, an IOError will be raised.
2 'w': Open for writing. If the file already exists, its contents will be

overwritten. If the file does not exist, it will be created.

3 'a': Open for appending. The file pointer is positioned at the end of the
file. New data will be written to the end of the file. If the file does not exist,
it will be created.
4 'r+': Open for reading and writing. The file pointer is positioned at the
beginning of the file. If the file does not exist or cannot be opened, an
IOError will be raised.
5 'w+': Open for reading and writing. If the file already exists, its
contents will be overwritten. If the file does not exist, it will be created.
6 'a+': Open for reading and appending. The file pointer is positioned at
the end of the file. New data will be written to the end of the file. If the file
does not exist, it will be created.

Here's how you can use these file access modes in Python:
Open a file in read mode
with open('file.txt', 'r') as file:

content = file.read()
print(content)

Open a file in write mode
with open('file.txt', 'w') as file:

file.write('Hello, world!')

Open a file in append mode
with open('file.txt', 'a') as file:

file.write('\nAppending new content')

Open a file in read and write mode
with open('file.txt', 'r+') as file:

content = file.read()
file.write('\nAdding new content')

Open a file in read and write mode (creating a new file if it doesn't exist)
with open('new_file.txt', 'w+') as file:

file.write('This is a new file')

Open a file in read and append mode (creating a new file if it doesn't exist)
with open('new_file.txt', 'a+') as file:

file.write('\nThis is appended content')

Remember to always close the file using the with statement or by explicitly
calling the close() method after you are done working with it. This ensures
that any resources used by the file are properly released.

Handler
In Python, a file handler (also referred to as a file object or file descriptor)
is an object that represents an open file. It provides methods and attributes
that allow you to interact with the file, such as reading from it, writing to it,
or manipulating its contents.
File handlers are typically obtained by calling the open() function, which
returns a file handler associated with the specified file. You can then use
this file handler to perform various operations on the file.
Here's how to use a file handler in Python:
Open a file in read mode and obtain a file handler
file_handler = open('file.txt', 'r')

Read the entire contents of the file
content = file_handler.read()
print(content)

Close the file handler when done
file_handler.close()

In the above example:

We use the open() function to open a file named 'file.txt' in
read mode ('r'). This returns a file handler that represents the
opened file.
We then use the read() method of the file handler to read the
entire contents of the file and store it in the variable content.
Finally, we close the file handler by calling its close() method.
It's important to close file handlers when they are no longer
needed to free up system resources and ensure that any
buffered data is flushed to the file.

Additionally, Python supports a context manager (with statement) for file
handling, which automatically closes the file handler when you exit the
block. This is the recommended way to work with files in Python:

Open a file using a context manager
with open('file.txt', 'r') as file_handler:

content = file_handler.read()
print(content)

In this example, the file handler is automatically closed when the code
block exits, regardless of whether an exception occurs. Using a context
manager helps ensure that file resources are properly managed and avoids
the need for explicit calls to close().
Append
To append data to a file using a file handler in Python, you can open the file
in append mode ('a') and then use the file handler's write() method to add
the desired content to the end of the file. Here's how you can do it:
Open the file in append mode and obtain a file handler
with open('file.txt', 'a') as file_handler:

Write data to the file
file_handler.write('\nNew data to be appended')

In this example:

We open the file 'file.txt' in append mode ('a') using a context
manager (with statement), which automatically closes the file
handler when done.
Inside the context manager block, we use the file handler's
write() method to append the string 'New data to be appended'
to the file. The \n character is used to add a new line before the
appended data.

After executing this code, the file 'file.txt' will contain the original contents,
followed by the new data appended at the end. It's worth noting that the file
will be created if it does not already exist. If you want to append data to an
existing file, ensure it's present in the specified location.
Create
To create and write content to a file using a file handler in Python, you can
open the file in write mode ('w') and then use the file handler's write()
method to add the desired content. Here's how you can do it:

Open the file in write mode and obtain a file handler
with open('file.txt', 'w') as file_handler:

Write data to the file
file_handler.write('This is some content that we are writing to the file.\n')
file_handler.write('This is another line of content.\n')

In this example:

We open the file 'file.txt' in write mode ('w') using a context
manager (with statement), which automatically closes the file
handler when done.
Inside the context manager block, we use the file handler's
write() method to write the desired content to the file. Each
call to write() adds the specified string to the file.

After executing this code, the file 'file.txt' will contain the content that we
wrote to it. If the file already exists, its contents will be overwritten. If you
want to append content to an existing file or preserve its current contents,
you should use append mode ('a') instead of write mode ('w').

File size
You can use the os.path.getsize() function from the os module to get the size
of a file in bytes. Here's how you can use it:
import os

Get the size of the file
file_size = os.path.getsize('file.txt')

print("File size:", file_size, "bytes")

In this example:

We import the os module.
We use the os.path.getsize() function, passing the path to the
file ('file.txt' in this case) as an argument.
The function returns the size of the file in bytes, which we
store in the variable file_size.
We print the size of the file to the console.

This method allows you to quickly retrieve the size of a file without
needing to open it or read its contents.

Move File
To move a file from one directory to another in Python, you can use the
shutil.move() function from the shutil module. Here's how you can use it:

import shutil

Source and destination file paths
source_file = 'source_directory/file.txt'
destination_file = 'destination_directory/file.txt'

Move the file from the source directory to the destination directory
shutil.move(source_file, destination_file)

print("File moved successfully!")

In this example:

We import the shutil module.
We define the paths of the source file and the destination file.
We use the shutil.move() function, passing the source file path
and the destination file path as arguments.
The function moves the file from the source directory to the
destination directory.
Finally, we print a message to indicate that the file has been
moved successfully.

Make sure to replace 'source_directory/file.txt' and
'destination_directory/file.txt' with the actual paths of the source and
destination directories respectively, as well as the filenames you want to
move.
Delete File
To delete a file in Python, you can use the os.remove() function from the os
module. Here's how you can use it:
import os

File path
file_path = 'file_to_delete.txt'

Check if the file exists before attempting to delete it
if os.path.exists(file_path):

Delete the file
os.remove(file_path)
print("File deleted successfully!")

else:
print("File does not exist.")

In this example:

We import the os module.
We define the path of the file we want to delete.
We use the os.path.exists() function to check if the file exists
before attempting to delete it.
If the file exists, we use the os.remove() function, passing the
file path as an argument, to delete the file.
If the file does not exist, we print a message indicating that the
file does not exist.

Make sure to replace 'file_to_delete.txt' with the actual path of the file you
want to delete.

2 Python Text File

Read
To read from a file in Python, you can use the open() function to open the
file and obtain a file handler, and then use methods like read(), readline(), or
readlines() to read the content from the file. Here's how you can do it:
1 Reading the entire contents of a file at once using read():
Open the file in read mode and obtain a file handler
with open('file.txt', 'r') as file_handler:

Read the entire contents of the file
content = file_handler.read()
print(content)

2 Reading one line at a time using readline():

Open the file in read mode and obtain a file handler
with open('file.txt', 'r') as file_handler:

Read one line at a time
line = file_handler.readline()
while line:

print(line, end='') # end='' to avoid adding extra newlines
line = file_handler.readline()

3 Reading all lines into a list using readlines():
Open the file in read mode and obtain a file handler
with open('file.txt', 'r') as file_handler:

Read all lines into a list
lines = file_handler.readlines()
for line in lines:

print(line, end='') # end='' to avoid adding extra newlines

In each example:

We use the open() function with the file name 'file.txt' and the
mode 'r' to open the file in read mode.
We use a context manager (with statement) to automatically
close the file handler after it's been opened.
We use one of the file handler's methods (read(), readline(), or
readlines()) to read the content from the file.
We print the content to the console.

Choose the appropriate method based on your specific requirements. If you
want to process the entire content of the file at once, use read(). If you want
to process the file line by line, use readline(). If you want to store all lines
in a list, use readlines().

Path
In Python, you can obtain both relative and absolute file paths using various
methods. Here are some common approaches:
1 Using the os.path Module:

The os.path.abspath() function returns the absolute path of a
file.
The os.path.relpath() function returns the relative path of a
file from a specified directory (or the current working
directory if not specified).

import os

Absolute path
absolute_path = os.path.abspath('file.txt')
print("Absolute path:", absolute_path)

Relative path from the current working directory
relative_path = os.path.relpath('file.txt')
print("Relative path:", relative_path)

2 Using the pathlib Module (Python 3.4 and later):

The pathlib.Path.resolve() method returns the absolute path of
a file.
The pathlib.Path.relative_to() method returns the relative path
of a file from a specified directory.

from pathlib import Path

Absolute path
absolute_path = Path('file.txt').resolve()
print("Absolute path:", absolute_path)

Relative path from the current working directory
relative_path = Path('file.txt').relative_to(Path.cwd())
print("Relative path:", relative_path)

3 Using the os.getcwd() Function (to get the current working

directory):

The os.getcwd() function returns the current working directory.
You can combine this with relative file paths to get the
absolute paths.

import os

Current working directory
cwd = os.getcwd()

Relative file path
relative_path = 'file.txt'

Absolute path
absolute_path = os.path.join(cwd, relative_path)
print("Absolute path:", absolute_path)

Choose the method that best fits your requirements and coding style. The
pathlib module is recommended for its object-oriented interface and
improved readability.

Line
To access lines of a file in Python, you can use various methods provided
by file objects, such as readline(), readlines(), or iterating over the file
object itself. Here's how you can do it:
1 Using readline():
Open the file in read mode and obtain a file handler
with open('file.txt', 'r') as file_handler:

Read one line at a time
line = file_handler.readline()
while line:

Process the line
print(line.strip()) # strip() to remove leading and trailing whitespace
Read the next line
line = file_handler.readline()

2 Using readlines():
Open the file in read mode and obtain a file handler
with open('file.txt', 'r') as file_handler:

Read all lines into a list
lines = file_handler.readlines()
Iterate over the lines
for line in lines:

Process each line
print(line.strip()) # strip() to remove leading and trailing whitespace

3 Iterating over the file object:
Open the file in read mode and obtain a file handler
with open('file.txt', 'r') as file_handler:

Iterate over the file object
for line in file_handler:

Process each line
print(line.strip()) # strip() to remove leading and trailing whitespace

In each example:

We use the open() function with the file name 'file.txt' and the
mode 'r' to open the file in read mode.
We use a context manager (with statement) to automatically
close the file handler after it's been opened.
We use one of the methods (readline(), readlines(), or iterating
over the file object) to access lines from the file.
We process each line as needed, such as stripping leading and
trailing whitespace using strip(), and then print it to the
console.

Write
To write a line to a file using Python, you can use the write() method of the
file object. Here's how you can do it:
Open the file in write mode and obtain a file handler
with open('output.txt', 'w') as file_handler:

Write a line to the file
file_handler.write("This is a line written to the file.\n")

In this example:

We use the open() function with the file name 'output.txt' and
the mode 'w' to open the file in write mode. If the file does not
exist, it will be created. If the file already exists, its contents
will be overwritten.
We use a context manager (with statement) to automatically
close the file handler after it's been opened.
We use the write() method of the file handler to write the
specified line to the file. The '\n' character is used to add a
newline at the end of the line.

After executing this code, the file 'output.txt' will contain the line "This is a
line written to the file." followed by a newline character.

3 Python Exceptions
Introduction
An exception in Python is an event that occurs during the execution of a
program that disrupts the normal flow of the program's instructions. When
an exceptional condition arises, such as an error or unexpected behavior,
Python raises an exception to handle the situation.

Exceptions are used to manage errors and unexpected situations in Python
programs. They provide a mechanism for handling errors gracefully and
preventing program crashes. Instead of abruptly terminating the program
when an error occurs, exceptions allow you to handle errors in a controlled

manner, such as by displaying an error message, logging the error, or taking
corrective action.

You should use exceptions in Python to:
1 Handle errors: Exceptions allow you to detect and handle errors that
occur during the execution of your program. This helps prevent program
crashes and provides a way to gracefully recover from errors.

2 Provide feedback to users: Exceptions allow you to provide informative
error messages to users, helping them understand what went wrong and
how to resolve the issue.
3 Log errors: Exceptions can be logged to record information about errors
that occur during program execution. This can be useful for debugging and
troubleshooting.
4 Take corrective action: Exceptions can be caught and handled by
executing specific code to address the error condition, such as retrying an
operation, using default values, or prompting the user for input.
Here's an example of using exceptions to handle a division by zero error:
try:

result = 10 / 0 # Attempting division by zero
except ZeroDivisionError:

print("Error: Division by zero")

In this example:

The code inside the try block attempts to divide 10 by zero,
which would result in a ZeroDivisionError.
The except block catches the ZeroDivisionError exception and
prints an error message indicating that division by zero
occurred.
By handling the exception, the program continues to execute
normally without crashing.

try-except

In Python, you use the try and except blocks to handle exceptions. The
basic syntax is as follows:
try:

Code that may raise an exception
...

except ExceptionType:
Code to handle the exception
...

Here's a breakdown of the syntax:

The try block contains the code that may raise an exception.
It's the block where you expect the potential error to occur.
The except block specifies the type of exception that you want
to catch and handle. If an exception of the specified type (or a
subclass of it) occurs within the try block, the corresponding
except block is executed.
You can have multiple except blocks to handle different types
of exceptions, or a single except block to catch all exceptions.
If no specific exception type is specified, it will catch all
exceptions (not recommended unless you have a good reason).

Here's an example demonstrating the use of try-except blocks:

try:
Code that may raise an exception
num1 = int(input("Enter a number: "))
num2 = int(input("Enter another number: "))
result = num1 / num2
print("Result:", result)

except ValueError:
Handle ValueError (e.g., invalid input)
print("Please enter valid integers.")

except ZeroDivisionError:
Handle ZeroDivisionError (e.g., division by zero)
print("Error: Division by zero is not allowed.")

except Exception as e:
Handle any other type of exception

print("An error occurred:", e)

In this example:

The try block attempts to perform division operation between
two numbers entered by the user.
If a ValueError occurs (e.g., if the user inputs non-integer
values), the corresponding except ValueError block handles it.
If a ZeroDivisionError occurs (e.g., if the user inputs 0 as the
second number), the corresponding except ZeroDivisionError
block handles it.
If any other type of exception occurs, it will be caught by the
except Exception block, and the error message will be printed.
If no exception occurs within the try block, the except block(s)
will be skipped, and the program will continue execution after
the try-except statement.

else
In Python, you can use a try...else block to handle exceptions in a way that
distinguishes between the code that may raise an exception and the code
that should run if no exception occurs. The else block is executed only if no
exception is raised in the try block. Here's the syntax:
try:

Code that may raise an exception
...

except ExceptionType:
Code to handle the exception
...

else:
Code to execute if no exception occurs
...

Here's a breakdown of the syntax:

The try block contains the code that may raise an exception.
This is the block where you expect the potential error to occur.

The except block specifies the type of exception that you want
to catch and handle. If an exception of the specified type (or a
subclass of it) occurs within the try block, the corresponding
except block is executed.

The else block contains code that should run if no exception
occurs in the try block. It is optional and is executed only if no
exception is raised.

Here's an example demonstrating the use of try...else blocks:

try:
Code that may raise an exception
num1 = int(input("Enter a number: "))
num2 = int(input("Enter another number: "))
result = num1 / num2

except ValueError:
Handle ValueError (e.g., invalid input)
print("Please enter valid integers.")

except ZeroDivisionError:
Handle ZeroDivisionError (e.g., division by zero)
print("Error: Division by zero is not allowed.")

else:
Code to execute if no exception occurs
print("Result:", result)

In this example:

The try block attempts to perform a division operation between
two numbers entered by the user.
If a ValueError occurs (e.g., if the user inputs non-integer
values), the corresponding except ValueError block handles it.
If a ZeroDivisionError occurs (e.g., if the user inputs 0 as the
second number), the corresponding except ZeroDivisionError
block handles it.
If no exception occurs within the try block, the else block is
executed, and the result is printed.

finally

In Python, the finally clause is used in conjunction with the try statement to
define a block of code that is always executed, regardless of whether an
exception occurs or not. The finally block is commonly used to perform
cleanup actions, such as closing files or releasing resources, ensuring that
these actions are executed even if an exception is raised. Here's the syntax:
try:

Code that may raise an exception
...

except ExceptionType:
Code to handle the exception
...

finally:
Code that is always executed
...

Here's a breakdown of the syntax:

The try block contains the code that may raise an exception.
This is the block where you expect the potential error to occur.

The except block specifies the type of exception that you want
to catch and handle. If an exception of the specified type (or a
subclass of it) occurs within the try block, the corresponding
except block is executed.

The finally block contains code that is always executed,
regardless of whether an exception occurs in the try block or
not.

Here's an example demonstrating the use of the finally clause:
try:

Open a file
file_handler = open('file.txt', 'r')
Read data from the file
data = file_handler.read()
print("Data from file:", data)

except FileNotFoundError:
print("File not found.")

finally:
Close the file (cleanup action)

file_handler.close()
print("File closed.")

In this example:

The try block attempts to open a file 'file.txt' for reading and
read its contents.
If a FileNotFoundError occurs (e.g., if the file does not exist),
the corresponding except FileNotFoundError block handles it.
The finally block ensures that the file is closed using the
close() method, even if an exception occurs or not. This
cleanup action is executed regardless of whether an exception
is raised, ensuring that the file is properly closed and resources
are released.

4 Python Testing
Introduction
Unit testing is a software testing technique where individual units or
components of a software application are tested in isolation to ensure they
behave as expected. In Python, unit testing is commonly performed using
the built-in unittest module or third-party libraries like pytest.

Here's an overview of unit testing in Python:
1 When to use it: Unit testing is typically performed during the
development phase of a software project. It is used to validate the behavior
of individual units or functions in the codebase. Unit tests help ensure that

each unit of code works correctly in isolation before integrating them into
the larger system. Unit testing is an essential part of the Test-Driven
Development (TDD) process, where tests are written before the actual code
implementation.

2 Why it's needed:

Identify bugs early: Unit tests can catch bugs early in the
development process, making them easier and cheaper to
fix.
Ensure code quality: Unit tests help maintain code quality
by providing a safety net for refactoring and code changes.
They ensure that existing functionality remains intact as the
codebase evolves.
Facilitate collaboration: Unit tests serve as documentation
for how a piece of code should behave. They make it easier
for developers to understand and collaborate on the
codebase.
Promote confidence: Having a comprehensive suite of unit
tests gives developers confidence that their code works as
intended. It allows them to make changes with the assurance
that existing functionality won't be inadvertently broken.

3 How to write unit tests: In Python, unit tests are written using the
unittest framework or other testing libraries like pytest. You define test
cases as subclasses of unittest.TestCase and write test methods that verify
the behavior of individual functions or classes. Test methods typically use
assertions to check expected outcomes against actual results.

Here's a simple example of a unit test using unittest:
import unittest

def add(x, y):
return x + y

class TestAddFunction(unittest.TestCase):
def test_add_positive_numbers(self):

self.assertEqual(add(2, 3), 5)

def test_add_negative_numbers(self):
self.assertEqual(add(-2, -3), -5)

if __name__ == '__main__':
unittest.main()

In this example, we define a simple add function and write unit tests to
verify its behavior for different input scenarios.

Overall, unit testing is an essential practice in software development,
including Python, as it helps ensure code quality, maintainability, and
reliability of the software product.

pytest install
You can install pytest using pip, the package installer for Python. Here's the
command to install pytest:
pip install pytest

You can run this command in your terminal or command prompt to install
pytest. Make sure you have pip installed and configured properly in your
Python environment.

Once pytest is installed, you can use it to write and run tests for your
Python code.

pytest test cases
To create test cases using pytest in Python, you typically organize your test
code in separate Python files and use functions prefixed with test_ to define
individual test cases. Here's a step-by-step guide on how to create test cases
using pytest:

1 Install pytest: If you haven't already installed pytest, you can do so
using pip:
pip install pytest

2 Create a Python file for your test code: Create a new Python file (e.g.,
test_example.py) where you'll write your test cases. This file should contain
functions that define your test cases.

3 Write test functions: Write test functions using the test_ prefix to
indicate that they are test cases. Within these functions, use assertions to
verify the expected behavior of the code being tested.

Here's an example of a test file (test_example.py) with some test cases:
test_example.py

def add(x, y):
return x + y

def test_add_positive_numbers():
assert add(2, 3) == 5

def test_add_negative_numbers():
assert add(-2, -3) == -5

In this example, we have two test functions (test_add_positive_numbers
and test_add_negative_numbers) that test the add function for different
scenarios.

4 Run pytest: To run your tests, navigate to the directory containing your
test file(s) in your terminal or command prompt, and run the pytest
command:
pytest

pytest will automatically discover and run any test functions defined in files
with names that start with test_. It will display the results of the tests,
including any failures or errors.

You can also specify the name of the test file(s) or directories containing
test files to run specific tests:
pytest test_example.py

This command runs only the tests defined in test_example.py.

	Chapter 1 :
	Chapter 2 :
	Chapter 3 :
	Chapter 4 :
	Chapter 5 :
	Chapter 6 :
	Chapter 7 :

