Skip to content

Adding the GPR Notebook for Hyperparameter tuning #37

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
181 changes: 181 additions & 0 deletions GPR_Optimization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "marimo",
# "matplotlib==3.10.3",
# "numpy==2.2.6",
# "scikit-learn==1.6.1",
# "scipy==1.15.3",
# ]
# ///

import marimo

__generated_with = "0.13.7"
app = marimo.App(width="medium")


@app.cell
def _():
import numpy as np
import matplotlib.pyplot as plt
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern, WhiteKernel, ConstantKernel as C

def black_box_function(x):
return - (np.sin(3*x) + 0.5 * x)
return (
C,
GaussianProcessRegressor,
Matern,
WhiteKernel,
black_box_function,
np,
plt,
)


@app.cell
def _(black_box_function, np, plt):
X = np.linspace(0, 5.5, 1000).reshape(-1, 1)
y = black_box_function(X)
plt.plot(X, y)
plt.title("Black-box function")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.show()
return X, y


@app.cell
def _(black_box_function, np):
X_grid = np.linspace(0, 2, 100).reshape(-1, 1)
y_grid = black_box_function(X_grid)
x_best = X_grid[np.argmax(y_grid)]
return


@app.cell
def _(black_box_function, np):
# Initial sample points (simulate prior evaluations)
X_sample = np.array([[1.0], [3.0], [5.5]])
y_sample = black_box_function(X_sample)
return X_sample, y_sample


@app.cell
def _(C, GaussianProcessRegressor, Matern, WhiteKernel, X_sample, y_sample):
# Define the kernel
kernel = C(1.0) * Matern(length_scale=1.0, nu=2.5) + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-10, 1e1))

# Create and fit the Gaussian Process model
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
gpr.fit(X_sample, y_sample)
return (gpr,)


@app.cell
def _(X, X_sample, gpr, plt, y, y_sample):
# Predict across the domain
mu, std = gpr.predict(X, return_std=True)

# Plot the result
plt.figure(figsize=(10, 5))
plt.plot(X, y, 'k--', label="True function")
plt.plot(X, mu, 'b-', label="GPR mean")
plt.fill_between(X.ravel(), mu - std, mu + std, alpha=0.3, label="Uncertainty")
plt.scatter(X_sample, y_sample, c='red', label="Samples")
plt.legend()
plt.title("Gaussian Process Fit")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.show()
return


@app.cell
def _(np):
from scipy.stats import norm

def expected_improvement(X, X_sample, y_sample, model, xi=0.01):
mu, std = model.predict(X, return_std=True)
mu_sample_opt = np.min(y_sample)

with np.errstate(divide='warn'):
imp = mu_sample_opt - mu - xi # because we are minimizing
Z = imp / std
ei = imp * norm.cdf(Z) + std * norm.pdf(Z)
ei[std == 0.0] = 0.0

return ei

return (expected_improvement,)


@app.cell
def _(X, X_sample, expected_improvement, gpr, np, plt, y_sample):
ei = expected_improvement(X, X_sample, y_sample, gpr)

plt.figure(figsize=(10, 4))
plt.plot(X, ei, label="Expected Improvement")
plt.axvline(X[np.argmax(ei)], color='r', linestyle='--', label="Next sample point")
plt.title("Acquisition Function (Expected Improvement)")
plt.xlabel("x")
plt.ylabel("EI(x)")
plt.legend()
plt.show()

return


@app.cell
def _(X, black_box_function, expected_improvement, gpr, np):
def bayesian_optimization(n_iter=10):
# Initial data
X_sample = np.array([[1.0], [2.5], [4.0]])
y_sample = black_box_function(X_sample)

for i in range(n_iter):
gpr.fit(X_sample, y_sample)
ei = expected_improvement(X, X_sample, y_sample, gpr)
x_next = X[np.argmax(ei)].reshape(-1, 1)

# Evaluate the function at the new point
y_next = black_box_function(x_next)

# Add the new sample to our dataset
X_sample = np.vstack((X_sample, x_next))
y_sample = np.append(y_sample, y_next)
return X_sample, y_sample

return (bayesian_optimization,)


@app.cell
def _(bayesian_optimization):
X_opt, y_opt = bayesian_optimization(n_iter=10)

return X_opt, y_opt


@app.cell
def _(X, X_opt, black_box_function, plt, y_opt):
# Plot final sampled points
plt.plot(X, black_box_function(X), 'k--', label="True function")
plt.scatter(X_opt, y_opt, c='red', label="Sampled Points")
plt.title("Bayesian Optimization with Gaussian Process")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.show()

return


@app.cell
def _():
return


if __name__ == "__main__":
app.run()
82 changes: 82 additions & 0 deletions public/GPR_Optimization.html

Large diffs are not rendered by default.

16 changes: 4 additions & 12 deletions public/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -85,22 +85,14 @@ <h2 class="notebook-title">polars vs pandas</h2>
<h2 class="notebook-title">pyspark parametrize</h2>
<a href="data_science_tools/pyspark_parametrize.html" class="notebook-link">View the notebook</a>
</li>
<li class="notebook-item">
<h2 class="notebook-title">diffbot llm</h2>
<a href="llm/diffbot_llm.html" class="notebook-link">View the notebook</a>
</li>
<li class="notebook-item">
<h2 class="notebook-title">lchain deepseek</h2>
<a href="llm/lchain_deepseek.html" class="notebook-link">View the notebook</a>
</li>
<li class="notebook-item">
<h2 class="notebook-title">lchain ollama</h2>
<a href="llm/lchain_ollama.html" class="notebook-link">View the notebook</a>
</li>
<li class="notebook-item">
<h2 class="notebook-title">pydantic ai examples</h2>
<a href="llm/pydantic_ai_examples.html" class="notebook-link">View the notebook</a>
</li>
<li class="notebook-item">
<h2 class="notebook-title">temp</h2>
<a href="temp/temp.html" class="notebook-link">View the notebook</a>
</li>
</ul>
</body>
</html>
82 changes: 0 additions & 82 deletions public/llm/diffbot_llm.html

This file was deleted.

82 changes: 0 additions & 82 deletions public/llm/lchain_deepseek.html

This file was deleted.

82 changes: 0 additions & 82 deletions public/llm/lchain_ollama.html

This file was deleted.

82 changes: 82 additions & 0 deletions public/temp.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<link rel="icon" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/favicon.ico" />
<!-- Preload is necessary because we show these images when we disconnect from the server,
but at that point we cannot load these images from the server -->
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/gradient-yHQUC_QB.png" as="image" />
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/noise-60BoTA8O.png" as="image" />
<!-- Preload the fonts -->
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/Lora-VariableFont_wght-B2ootaw-.ttf" as="font" crossorigin="anonymous" />
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/PTSans-Regular-CxL0S8W7.ttf" as="font" crossorigin="anonymous" />
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/PTSans-Bold-D9fedIX3.ttf" as="font" crossorigin="anonymous" />
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/FiraMono-Regular-BTCkDNvf.ttf" as="font" crossorigin="anonymous" />
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/FiraMono-Medium-DU3aDxX5.ttf" as="font" crossorigin="anonymous" />
<link rel="preload" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/FiraMono-Bold-CLVRCuM9.ttf" as="font" crossorigin="anonymous" />

<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="theme-color" content="#000000" />
<meta name="description" content="a marimo app" />
<link rel="apple-touch-icon" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/apple-touch-icon.png" />
<link rel="manifest" crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/manifest.json" />

<script data-marimo="true">
function __resizeIframe(obj) {
var scrollbarHeight = 20; // Max between windows, mac, and linux

function setHeight() {
var element = obj.contentWindow.document.documentElement;
// If there is no vertical scrollbar, we don't need to resize the iframe
if (element.scrollHeight === element.clientHeight) {
return;
}

// Create a new height that includes the scrollbar height if it's visible
var hasHorizontalScrollbar = element.scrollWidth > element.clientWidth;
var newHeight = element.scrollHeight + (hasHorizontalScrollbar ? scrollbarHeight : 0);

// Only update the height if it's different from the current height
if (obj.style.height !== `${newHeight}px`) {
obj.style.height = `${newHeight}px`;
}
}

// Resize the iframe to the height of the content and bottom scrollbar height
setHeight();

// Resize the iframe when the content changes
const resizeObserver = new ResizeObserver((entries) => {
setHeight();
});
resizeObserver.observe(obj.contentWindow.document.body);
}
</script>
<marimo-filename hidden>temp.py</marimo-filename>
<marimo-mode data-mode='read' hidden></marimo-mode>
<marimo-version data-version='0.13.7' hidden></marimo-version>
<marimo-user-config data-config='{"completion": {"activate_on_typing": true, "copilot": false}, "display": {"cell_output": "above", "code_editor_font_size": 14, "dataframes": "rich", "default_table_page_size": 10, "default_width": "medium", "theme": "light"}, "formatting": {"line_length": 79}, "keymap": {"overrides": {}, "preset": "default"}, "language_servers": {"pylsp": {"enable_flake8": false, "enable_mypy": true, "enable_pydocstyle": false, "enable_pyflakes": false, "enable_pylint": false, "enable_ruff": true, "enabled": true}}, "package_management": {"manager": "uv"}, "runtime": {"auto_instantiate": true, "auto_reload": "off", "on_cell_change": "autorun", "output_max_bytes": 8000000, "reactive_tests": true, "std_stream_max_bytes": 1000000, "watcher_on_save": "lazy"}, "save": {"autosave": "after_delay", "autosave_delay": 1000, "format_on_save": false}, "server": {"browser": "default", "follow_symlink": false}, "snippets": {"custom_paths": [], "include_default_snippets": true}}' data-overrides='{}' hidden></marimo-user-config>
<marimo-app-config data-config='{"sql_output": "auto", "width": "medium"}' hidden></marimo-app-config>
<marimo-server-token data-token='static' hidden></marimo-server-token>
<title>temp</title>
<script type="module" crossorigin crossorigin="anonymous" src="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/index-4h4O6nRv.js"></script>
<link rel="stylesheet" crossorigin crossorigin="anonymous" href="https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist/assets/index-DredxwTT.css">

<script data-marimo="true">
window.__MARIMO_STATIC__ = {};
window.__MARIMO_STATIC__.version = "0.13.7";
window.__MARIMO_STATIC__.notebookState = {"cellIds": ["Hbol", "MJUe", "vblA"], "cellNames": ["Xw==", "Xw==", "Xw=="], "cellCodes": ["", "aW1wb3J0JTIwbnVtcHklMjBhcyUyMG5wJTIwJTBBWCUyMCUzRCUyMG5wLmxpbnNwYWNlKDAlMkMxMCUyQzEwMCklMEFwcmludChYKQ==", ""], "cellConfigs": ["JTdCJTIyY29sdW1uJTIyJTNBJTIwbnVsbCUyQyUyMCUyMmRpc2FibGVkJTIyJTNBJTIwZmFsc2UlMkMlMjAlMjJoaWRlX2NvZGUlMjIlM0ElMjBmYWxzZSU3RA==", "JTdCJTIyY29sdW1uJTIyJTNBJTIwbnVsbCUyQyUyMCUyMmRpc2FibGVkJTIyJTNBJTIwZmFsc2UlMkMlMjAlMjJoaWRlX2NvZGUlMjIlM0ElMjBmYWxzZSU3RA==", "JTdCJTIyY29sdW1uJTIyJTNBJTIwbnVsbCUyQyUyMCUyMmRpc2FibGVkJTIyJTNBJTIwZmFsc2UlMkMlMjAlMjJoaWRlX2NvZGUlMjIlM0ElMjBmYWxzZSU3RA=="], "cellOutputs": {"Hbol": "JTdCJTIyY2hhbm5lbCUyMiUzQSUyMCUyMm91dHB1dCUyMiUyQyUyMCUyMm1pbWV0eXBlJTIyJTNBJTIwJTIydGV4dCUyRnBsYWluJTIyJTJDJTIwJTIyZGF0YSUyMiUzQSUyMCUyMiUyMiUyQyUyMCUyMnRpbWVzdGFtcCUyMiUzQSUyMDE3NDgyOTIyMTguNTk0NzUzJTdE", "MJUe": "JTdCJTIyY2hhbm5lbCUyMiUzQSUyMCUyMm91dHB1dCUyMiUyQyUyMCUyMm1pbWV0eXBlJTIyJTNBJTIwJTIydGV4dCUyRnBsYWluJTIyJTJDJTIwJTIyZGF0YSUyMiUzQSUyMCUyMiUyMiUyQyUyMCUyMnRpbWVzdGFtcCUyMiUzQSUyMDE3NDgyOTIyMTkuOTI2OTAzJTdE", "vblA": "JTdCJTIyY2hhbm5lbCUyMiUzQSUyMCUyMm91dHB1dCUyMiUyQyUyMCUyMm1pbWV0eXBlJTIyJTNBJTIwJTIydGV4dCUyRnBsYWluJTIyJTJDJTIwJTIyZGF0YSUyMiUzQSUyMCUyMiUyMiUyQyUyMCUyMnRpbWVzdGFtcCUyMiUzQSUyMDE3NDgyOTIyMTkuOTMwNTg0JTdE"}, "cellConsoleOutputs": {"MJUe": ["JTdCJTIyY2hhbm5lbCUyMiUzQSUyMCUyMnN0ZG91dCUyMiUyQyUyMCUyMm1pbWV0eXBlJTIyJTNBJTIwJTIydGV4dCUyRnBsYWluJTIyJTJDJTIwJTIyZGF0YSUyMiUzQSUyMCUyMiU1QiUyMDAuJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwJTIwMC4xMDEwMTAxJTIwJTIwJTIwMC4yMDIwMjAyJTIwJTIwJTIwMC4zMDMwMzAzJTIwJTIwJTIwMC40MDQwNDA0JTIwJTIwJTIwMC41MDUwNTA1MSU1Q24lMjAlMjAwLjYwNjA2MDYxJTIwJTIwMC43MDcwNzA3MSUyMCUyMDAuODA4MDgwODElMjAlMjAwLjkwOTA5MDkxJTIwJTIwMS4wMTAxMDEwMSUyMCUyMDEuMTExMTExMTElNUNuJTIwJTIwMS4yMTIxMjEyMSUyMCUyMDEuMzEzMTMxMzElMjAlMjAxLjQxNDE0MTQxJTIwJTIwMS41MTUxNTE1MiUyMCUyMDEuNjE2MTYxNjIlMjAlMjAxLjcxNzE3MTcyJTVDbiUyMCUyMDEuODE4MTgxODIlMjAlMjAxLjkxOTE5MTkyJTIwJTIwMi4wMjAyMDIwMiUyMCUyMDIuMTIxMjEyMTIlMjAlMjAyLjIyMjIyMjIyJTIwJTIwMi4zMjMyMzIzMiU1Q24lMjAlMjAyLjQyNDI0MjQyJTIwJTIwMi41MjUyNTI1MyUyMCUyMDIuNjI2MjYyNjMlMjAlMjAyLjcyNzI3MjczJTIwJTIwMi44MjgyODI4MyUyMCUyMDIuOTI5MjkyOTMlNUNuJTIwJTIwMy4wMzAzMDMwMyUyMCUyMDMuMTMxMzEzMTMlMjAlMjAzLjIzMjMyMzIzJTIwJTIwMy4zMzMzMzMzMyUyMCUyMDMuNDM0MzQzNDMlMjAlMjAzLjUzNTM1MzU0JTVDbiUyMCUyMDMuNjM2MzYzNjQlMjAlMjAzLjczNzM3Mzc0JTIwJTIwMy44MzgzODM4NCUyMCUyMDMuOTM5MzkzOTQlMjAlMjA0LjA0MDQwNDA0JTIwJTIwNC4xNDE0MTQxNCU1Q24lMjAlMjA0LjI0MjQyNDI0JTIwJTIwNC4zNDM0MzQzNCUyMCUyMDQuNDQ0NDQ0NDQlMjAlMjA0LjU0NTQ1NDU1JTIwJTIwNC42NDY0NjQ2NSUyMCUyMDQuNzQ3NDc0NzUlNUNuJTIwJTIwNC44NDg0ODQ4NSUyMCUyMDQuOTQ5NDk0OTUlMjAlMjA1LjA1MDUwNTA1JTIwJTIwNS4xNTE1MTUxNSUyMCUyMDUuMjUyNTI1MjUlMjAlMjA1LjM1MzUzNTM1JTVDbiUyMCUyMDUuNDU0NTQ1NDUlMjAlMjA1LjU1NTU1NTU2JTIwJTIwNS42NTY1NjU2NiUyMCUyMDUuNzU3NTc1NzYlMjAlMjA1Ljg1ODU4NTg2JTIwJTIwNS45NTk1OTU5NiU1Q24lMjAlMjA2LjA2MDYwNjA2JTIwJTIwNi4xNjE2MTYxNiUyMCUyMDYuMjYyNjI2MjYlMjAlMjA2LjM2MzYzNjM2JTIwJTIwNi40NjQ2NDY0NiUyMCUyMDYuNTY1NjU2NTclNUNuJTIwJTIwNi42NjY2NjY2NyUyMCUyMDYuNzY3Njc2NzclMjAlMjA2Ljg2ODY4Njg3JTIwJTIwNi45Njk2OTY5NyUyMCUyMDcuMDcwNzA3MDclMjAlMjA3LjE3MTcxNzE3JTVDbiUyMCUyMDcuMjcyNzI3MjclMjAlMjA3LjM3MzczNzM3JTIwJTIwNy40NzQ3NDc0NyUyMCUyMDcuNTc1NzU3NTglMjAlMjA3LjY3Njc2NzY4JTIwJTIwNy43Nzc3Nzc3OCU1Q24lMjAlMjA3Ljg3ODc4Nzg4JTIwJTIwNy45Nzk3OTc5OCUyMCUyMDguMDgwODA4MDglMjAlMjA4LjE4MTgxODE4JTIwJTIwOC4yODI4MjgyOCUyMCUyMDguMzgzODM4MzglNUNuJTIwJTIwOC40ODQ4NDg0OCUyMCUyMDguNTg1ODU4NTklMjAlMjA4LjY4Njg2ODY5JTIwJTIwOC43ODc4Nzg3OSUyMCUyMDguODg4ODg4ODklMjAlMjA4Ljk4OTg5ODk5JTVDbiUyMCUyMDkuMDkwOTA5MDklMjAlMjA5LjE5MTkxOTE5JTIwJTIwOS4yOTI5MjkyOSUyMCUyMDkuMzkzOTM5MzklMjAlMjA5LjQ5NDk0OTQ5JTIwJTIwOS41OTU5NTk2JTVDbiUyMCUyMDkuNjk2OTY5NyUyMCUyMCUyMDkuNzk3OTc5OCUyMCUyMCUyMDkuODk4OTg5OSUyMCUyMDEwLiUyMCUyMCUyMCUyMCUyMCUyMCUyMCUyMCU1RCU1Q24lMjIlMkMlMjAlMjJ0aW1lc3RhbXAlMjIlM0ElMjAxNzQ4MjkyMjE5LjkzMjkzMzglN0Q="]}};
window.__MARIMO_STATIC__.assetUrl = "https://cdn.jsdelivr.net/npm/@marimo-team/[email protected]/dist";
window.__MARIMO_STATIC__.files = {};
</script>
</head>
<body>
<div id="root"></div>

<marimo-code hidden="">
import%20marimo%0A%0A__generated_with%20%3D%20%220.13.7%22%0Aapp%20%3D%20marimo.App(width%3D%22medium%22)%0A%0A%0A%40app.cell%0Adef%20_()%3A%0A%20%20%20%20return%0A%0A%0A%40app.cell%0Adef%20_()%3A%0A%20%20%20%20import%20numpy%20as%20np%20%0A%20%20%20%20X%20%3D%20np.linspace(0%2C10%2C100)%0A%20%20%20%20print(X)%0A%20%20%20%20return%0A%0A%0A%40app.cell%0Adef%20_()%3A%0A%20%20%20%20return%0A%0A%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20app.run()%0A
</marimo-code>

<marimo-code-hash hidden="">aedf1ff40fcab818e81332aa77d9fe138097f5fa660be8fe3efd77cd485e2686</marimo-code-hash>
</body>
</html>
Loading