Skip to content

Uploaded jupyter file #43

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
198 changes: 198 additions & 0 deletions python/top-10-python-tricks.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "722cb34d",
"metadata": {
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
"papermill": {
"duration": 0.001725,
"end_time": "2025-07-02T13:57:55.591248",
"exception": false,
"start_time": "2025-07-02T13:57:55.589523",
"status": "completed"
},
"tags": []
},
"source": [
"\n",
"## 🐍 Top 10 Python Tricks Every Data Scientist Should Know\n",
"\n",
"*Boost your productivity and write cleaner, faster, and more efficient code in data science!*\n",
"\n",
"---\n",
"\n",
"### 📌 **1. List Comprehensions**\n",
"\n",
"**Why:** Faster and cleaner than traditional loops.\n",
"\n",
"```python\n",
"squares = [x**2 for x in range(10)]\n",
"# Equivalent to:\n",
"# squares = []\n",
"# for x in range(10):\n",
"# squares.append(x**2)\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **2. Enumerate for Index + Value**\n",
"\n",
"**Why:** Clean way to loop with index and item.\n",
"\n",
"```python\n",
"for idx, val in enumerate(['a', 'b', 'c']):\n",
" print(f\"Index: {idx}, Value: {val}\")\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **3. Unpacking in Loops**\n",
"\n",
"**Why:** Makes code cleaner when working with tuples/lists.\n",
"\n",
"```python\n",
"pairs = [(1, 'a'), (2, 'b'), (3, 'c')]\n",
"for num, letter in pairs:\n",
" print(num, letter)\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **4. Using `zip()` to Combine Lists**\n",
"\n",
"**Why:** Pair elements from multiple lists.\n",
"\n",
"```python\n",
"names = ['Alice', 'Bob', 'Charlie']\n",
"scores = [85, 90, 95]\n",
"for name, score in zip(names, scores):\n",
" print(f\"{name} scored {score}\")\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **5. Dictionary Comprehensions**\n",
"\n",
"**Why:** Construct dictionaries concisely.\n",
"\n",
"```python\n",
"squares = {x: x*x for x in range(5)}\n",
"# Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **6. Lambda Functions**\n",
"\n",
"**Why:** Quick, inline anonymous functions.\n",
"\n",
"```python\n",
"double = lambda x: x * 2\n",
"print(double(5)) # Output: 10\n",
"```\n",
"\n",
"Use in pandas:\n",
"\n",
"```python\n",
"df['log_salary'] = df['salary'].apply(lambda x: np.log(x))\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **7. Using `any()` and `all()`**\n",
"\n",
"**Why:** Clean and fast checks across iterable values.\n",
"\n",
"```python\n",
"nums = [1, 2, 3, 0]\n",
"print(all(nums)) # False (because of 0)\n",
"print(any(nums)) # True (non-zero elements exist)\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **8. Swapping Variables Without Temp**\n",
"\n",
"**Why:** Clean, pythonic way to swap.\n",
"\n",
"```python\n",
"a, b = 10, 20\n",
"a, b = b, a\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **9. F-Strings for String Formatting (Python 3.6+)**\n",
"\n",
"**Why:** Cleaner and faster string formatting.\n",
"\n",
"```python\n",
"name = \"Abhishek\"\n",
"score = 95\n",
"print(f\"{name} scored {score} in the test.\")\n",
"```\n",
"\n",
"---\n",
"\n",
"### 📌 **10. Using `Counter` from `collections`**\n",
"\n",
"**Why:** Count frequencies with ease.\n",
"\n",
"```python\n",
"from collections import Counter\n",
"\n",
"words = ['data', 'science', 'data', 'AI']\n",
"word_counts = Counter(words)\n",
"print(word_counts)\n",
"# Output: Counter({'data': 2, 'science': 1, 'AI': 1})\n",
"```\n",
"\n",
"---\n"
]
}
],
"metadata": {
"kaggle": {
"accelerator": "none",
"dataSources": [],
"dockerImageVersionId": 31040,
"isGpuEnabled": false,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
},
"papermill": {
"default_parameters": {},
"duration": 5.447827,
"end_time": "2025-07-02T13:57:56.012152",
"environment_variables": {},
"exception": null,
"input_path": "__notebook__.ipynb",
"output_path": "__notebook__.ipynb",
"parameters": {},
"start_time": "2025-07-02T13:57:50.564325",
"version": "2.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}