Skip to content

Add optimised 'Indirect BGEMM' binary convolution kernels. #516

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 19 additions & 2 deletions larq_compute_engine/core/bconv2d/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,9 @@ cc_library(
)

cc_library(
name = "optimized",
name = "optimized_bgemm",
hdrs = [
"optimized.h",
"optimized_bgemm.h",
],
deps = [
":zero_padding_correction",
Expand All @@ -45,3 +45,20 @@ cc_library(
"@ruy//ruy/profiler:instrumentation",
],
)

cc_library(
name = "optimized_indirect_bgemm",
hdrs = [
"optimized_indirect_bgemm.h",
],
deps = [
":zero_padding_correction",
"//larq_compute_engine/core/indirect_bgemm:kernels",
"//larq_compute_engine/core/indirect_bgemm:prepare",
"@org_tensorflow//tensorflow/lite/kernels:cpu_backend_context",
"@org_tensorflow//tensorflow/lite/kernels:cpu_backend_gemm",
"@org_tensorflow//tensorflow/lite/kernels:padding",
"@org_tensorflow//tensorflow/lite/kernels/internal:optimized_base",
"@ruy//ruy/profiler:instrumentation",
],
)
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#ifndef COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_H_
#define COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_H_
#ifndef COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_BGEMM_H_
#define COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_BGEMM_H_

#include "larq_compute_engine/core/bconv2d/zero_padding_correction.h"
#include "larq_compute_engine/core/bgemm/bgemm.h"
Expand Down Expand Up @@ -61,7 +61,7 @@ inline void im2col(const ConvParams& params, const RuntimeShape& input_shape,
}

template <typename AccumScalar, typename DstScalar>
inline void BConv2DOptimized(
inline void BConv2DOptimizedBGEMM(
const ConvParams& params, const RuntimeShape& input_shape,
const TBitpacked* input_data, const RuntimeShape& filter_shape,
const TBitpacked* packed_filter_data,
Expand Down Expand Up @@ -152,6 +152,8 @@ inline void BConv2DOptimized(

if (std::is_same<DstScalar, float>::value &&
params.padding_type == PaddingType::kSame && pad_value == 0) {
ruy::profiler::ScopeLabel label("Zero padding correction");

const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
Expand All @@ -166,20 +168,17 @@ inline void BConv2DOptimized(
const int output_width = output_shape.Dims(2);
const int output_height = output_shape.Dims(1);

{
ruy::profiler::ScopeLabel label("Zero padding correction");
zero_padding_correction::ApplyCorrection(
batches, input_height, input_width, input_depth, filter_height,
filter_width, output_depth, stride_height, stride_width,
dilation_height_factor, dilation_width_factor,
reinterpret_cast<float*>(output_data), output_height, output_width,
padding_buffer);
}
zero_padding_correction::ApplyCorrection(
batches, input_height, input_width, input_depth, filter_height,
filter_width, output_depth, stride_height, stride_width,
dilation_height_factor, dilation_width_factor,
reinterpret_cast<float*>(output_data), output_height, output_width,
padding_buffer);
}
}

} // namespace bconv2d
} // namespace core
} // namespace compute_engine

#endif // COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_H_
#endif // COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_BGEMM_H_
68 changes: 68 additions & 0 deletions larq_compute_engine/core/bconv2d/optimized_indirect_bgemm.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
#ifndef COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_INDIRECT_BGEMM_H_
#define COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_INDIRECT_BGEMM_H_

#include "larq_compute_engine/core/bconv2d/zero_padding_correction.h"
#include "larq_compute_engine/core/indirect_bgemm/kernel.h"
#include "ruy/profiler/instrumentation.h"
#include "tensorflow/lite/kernels/internal/types.h"

namespace compute_engine {
namespace core {
namespace bconv2d {

template <typename AccumScalar, typename DstScalar>
inline void BConv2DOptimizedIndirectBGEMM(
const indirect_bgemm::IndirectBGEMMKernel<DstScalar> kernel,
const compute_engine::tflite::bconv2d::TfLiteBConv2DParams* conv_params,
const RuntimeShape& bitpacked_input_shape, const RuntimeShape& output_shape,
const OutputTransform<DstScalar>& output_transform,
const TBitpacked* packed_weights, const TBitpacked** indirection_buffer,
DstScalar* output_data, const float* padding_buffer, const int pad_value) {
TF_LITE_ASSERT_EQ(bitpacked_input_shape.DimensionsCount(), 4);
TF_LITE_ASSERT_EQ(output_shape.DimensionsCount(), 4);

ruy::profiler::ScopeLabel label("BConv2D (optimized, indirect BGEMM)");

const std::int32_t conv_kernel_size =
conv_params->filter_height * conv_params->filter_width;
const std::int32_t bitpacked_input_channels = bitpacked_input_shape.Dims(3);
const std::int32_t output_size = output_shape.Dims(1) * output_shape.Dims(2);
const std::int32_t output_channels = conv_params->channels_out;

indirect_bgemm::RunKernel(kernel, conv_kernel_size, bitpacked_input_channels,
output_size, output_channels, output_transform,
packed_weights, indirection_buffer, output_data);

if (std::is_same<DstScalar, float>::value &&
conv_params->padding_type == TfLitePadding::kTfLitePaddingSame &&
pad_value == 0) {
ruy::profiler::ScopeLabel label("Zero padding correction");

const int stride_width = conv_params->stride_width;
const int stride_height = conv_params->stride_height;
const int dilation_width_factor = conv_params->dilation_width_factor;
const int dilation_height_factor = conv_params->dilation_height_factor;
const int batches = MatchingDim(bitpacked_input_shape, 0, output_shape, 0);
const int input_depth = conv_params->channels_in;
const int input_width = bitpacked_input_shape.Dims(2);
const int input_height = bitpacked_input_shape.Dims(1);
const int filter_height = conv_params->filter_height;
const int filter_width = conv_params->filter_width;
const int output_depth = output_shape.Dims(3);
const int output_width = output_shape.Dims(2);
const int output_height = output_shape.Dims(1);

zero_padding_correction::ApplyCorrection(
batches, input_height, input_width, input_depth, filter_height,
filter_width, output_depth, stride_height, stride_width,
dilation_height_factor, dilation_width_factor,
reinterpret_cast<float*>(output_data), output_height, output_width,
padding_buffer);
}
}

} // namespace bconv2d
} // namespace core
} // namespace compute_engine

#endif // COMPUTE_ENGINE_CORE_BCONV2D_OPTIMIZED_INDIRECT_BGEMM_H_
30 changes: 30 additions & 0 deletions larq_compute_engine/core/indirect_bgemm/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
licenses(["notice"]) # Apache 2.0

package(default_visibility = ["//visibility:public"])

cc_library(
name = "prepare",
hdrs = [
"prepare.h",
],
deps = [
"//larq_compute_engine/core:types",
"//larq_compute_engine/tflite/kernels:bconv2d_params",
"@org_tensorflow//tensorflow/lite/kernels/internal:types",
],
)

cc_library(
name = "kernels",
hdrs = [
"kernel.h",
"kernel_4x2_portable.h",
],
deps = [
"//larq_compute_engine/core:types",
"//larq_compute_engine/core/bconv2d:output_transform",
"//larq_compute_engine/tflite/kernels:bconv2d_params",
"@org_tensorflow//tensorflow/lite/kernels/internal:types",
"@ruy//ruy/profiler:instrumentation",
],
)
79 changes: 79 additions & 0 deletions larq_compute_engine/core/indirect_bgemm/kernel.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@

#ifndef COMPUTE_ENGINE_INDIRECT_BGEMM_KERNEL_H_
#define COMPUTE_ENGINE_INDIRECT_BGEMM_KERNEL_H_

#include <cstdint>
#include <type_traits>

#include "larq_compute_engine/core/indirect_bgemm/kernel_4x2_portable.h"
#include "larq_compute_engine/core/types.h"
#include "larq_compute_engine/tflite/kernels/bconv2d_params.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/kernels/internal/types.h"

using namespace tflite;

namespace compute_engine {
namespace core {
namespace indirect_bgemm {

using compute_engine::tflite::bconv2d::TfLiteBConv2DParams;

template <typename DstScalar>
struct IndirectBGEMMKernel {
using MicroKernelFunction = void(const std::int32_t, const std::int32_t,
const std::int32_t, const std::int32_t,
const bconv2d::OutputTransform<DstScalar>&,
const TBitpacked*, const TBitpacked**,
DstScalar*);
MicroKernelFunction* micro_kernel_function;
const std::int32_t block_size_output_channels;
const std::int32_t block_size_pixels;
};

// This function allows us to select which kernel to use at runtime based on any
// parameter we choose: destination scalar; conv params; input/output shapes;
// even detected CPU features.
// It is very important that this function is deterministic, as we rely on
// the fact that the same kernel is selected for each call to `Eval` (as long as
// the input shape doesn't change).
template <typename DstScalar>
inline IndirectBGEMMKernel<DstScalar> SelectRuntimeKernel(
const TfLiteBConv2DParams* conv_params,
const RuntimeShape& bitpacked_input_shape,
const RuntimeShape& output_shape) {
// For now there is only one kernel available.
return IndirectBGEMMKernel<DstScalar>{
&kernel_4x2_portable::RunKernel<DstScalar>, 4, 2};
}

template <typename DstScalar>
void RunKernel(const IndirectBGEMMKernel<DstScalar>& kernel,
const std::int32_t conv_kernel_size,
const std::int32_t bitpacked_input_channels,
const std::int32_t output_size,
const std::int32_t output_channels,
const bconv2d::OutputTransform<DstScalar>& output_transform,
const TBitpacked* packed_weights_ptr,
const TBitpacked** indirection_buffer, DstScalar* output_ptr) {
// TODO: implement multithreading here.
for (std::int32_t pixel_start = 0; pixel_start < output_size;
pixel_start += kernel.block_size_pixels) {
const std::int32_t output_stride =
std::is_same<DstScalar, TBitpacked>::value
? bitpacking::GetBitpackedSize(output_channels)
: output_channels;
kernel.micro_kernel_function(
std::min(output_size - pixel_start, kernel.block_size_pixels),
conv_kernel_size, bitpacked_input_channels, output_channels,
output_transform, packed_weights_ptr,
indirection_buffer + pixel_start * conv_kernel_size,
output_ptr + pixel_start * output_stride);
}
}

} // namespace indirect_bgemm
} // namespace core
} // namespace compute_engine

#endif // COMPUTE_ENGINE_INDIRECT_BGEMM_KERNEL_H_
Loading