Skip to content

PIVA presubmission #223

@pudeIko

Description

@pudeIko

Submitting Author: Wojciech Radoslaw Pudelko (@pudeIko)
Package Name: PIVA
One-Line Description of Package: Visualization and analysis toolkit for experimental data from Angle-Resolved Photoemission Spectroscopy (ARPES)
Repository Link (if existing): https://github.com/pudeIko/piva
EiC: Szymon Molinski (@SimonMolinsky )


Code of Conduct & Commitment to Maintain Package

Description

  • Include a brief paragraph describing what your package does:

PIVA (Photoemission Interface for Visualization and Analysis) is a GUI application designed for the interactive and intuitive exploration of large, image-like datasets. While it accommodates the visualization of any multidimensional data, its features are specifically optimized for researchers conducting Angle-Resolved Photoemission Spectroscopy (ARPES) experiments. In addition to numerous image processing tools and the ability to apply technique-specific corrections, PIVA includes an expanding library of functions and methods for detailed fitting and advanced spectral analysis.

Community Partnerships

We partner with communities to support peer review with an additional layer of
checks that satisfy community requirements. If your package fits into an
existing community please check below:

Scope

  • Please indicate which category or categories this package falls under:

    • Data retrieval
    • Data extraction
    • Data processing/munging
    • Data deposition
    • Data validation and testing
    • Data visualization
    • Workflow automation
    • Citation management and bibliometrics
    • Scientific software wrappers
    • Database interoperability

Domain Specific

  • Geospatial
  • Education

  • Explain how and why the package falls under these categories (briefly, 1-2 sentences). For community partnerships, check also their specific guidelines as documented in the links above. Please note any areas you are unsure of:

Data extraction: Within the ARPES community, it is common for each beamline and lab to use their own file formats and conventions, which means one often need a custom script to get everything into a common format. To handle these discrepancies, PIVA comes with a data_loaders module that converts them into a standardized Dataset object. The current version includes specific Dataloader classes implemented for numerous sources and beamlines around the world.

Data visualization: The package enables efficient and intuitive exploration of large, image-like datasets. It includes specialized interactive viewers designed to handle 2D, 3D, and 4D datasets, depending on the experimental mode or conditions under which they were collected.

  • Who is the target audience and what are the scientific applications of this package?

Experimental physicists conducting ARPES measurements. The package provides a comprehensive framework addressing most of the experimenter's needs, including data extraction, inspection, validation, and detailed analysis.

  • Are there other Python packages that accomplish similar things? If so, how does yours differ?

Regarding software tailored for ARPES, two notable packages are ARPES Python Tools and PyARPES. However, they differ significantly from PIVA.

The visualization module in the former is limited to generating static plots and lacks any interactive features.

The latter is focused on post-processing and detailed analysis of the spectra, and is different in the following respects:

  • interactive exploration and browsing through data is either restricted to 2D data, or conducted inside the Jupyter environment, which highly affects efficiency and makes working with multiple datasets simultaneously difficult.
  • Viewers designed for 4D datasets are not implemented.
  • PIVA's data_loader module contains richer library of data loading scripts for different light sources around the world.

Furthermore, PyARPES has not been maintained for several years.

  • Any other questions or issues we should be aware of:
    • Along with the submission, a manuscript on the PIVA package is included, which is intended to be considered for publication in the Journal of Open Source Software.

P.S. Have feedback/comments about our review process? Leave a comment here

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    Status

    pre-submission

    Status

    Done

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions