Skip to content

feat: add cached token metrics support for Amazon Bedrock #641

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 39 additions & 6 deletions src/strands/telemetry/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@

from ..telemetry import metrics_constants as constants
from ..types.content import Message
from ..types.streaming import Metrics, Usage
from ..types.event_loop import Metrics, Usage
from ..types.tools import ToolUse

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -264,6 +264,21 @@ def update_usage(self, usage: Usage) -> None:
self.accumulated_usage["outputTokens"] += usage["outputTokens"]
self.accumulated_usage["totalTokens"] += usage["totalTokens"]

# Handle optional cached token metrics
if "cacheReadInputTokens" in usage:
cache_read_tokens = usage["cacheReadInputTokens"]
self._metrics_client.event_loop_cache_read_input_tokens.record(cache_read_tokens)
self.accumulated_usage["cacheReadInputTokens"] = (
self.accumulated_usage.get("cacheReadInputTokens", 0) + cache_read_tokens
)

if "cacheWriteInputTokens" in usage:
cache_write_tokens = usage["cacheWriteInputTokens"]
self._metrics_client.event_loop_cache_write_input_tokens.record(cache_write_tokens)
self.accumulated_usage["cacheWriteInputTokens"] = (
self.accumulated_usage.get("cacheWriteInputTokens", 0) + cache_write_tokens
)

def update_metrics(self, metrics: Metrics) -> None:
"""Update the accumulated performance metrics with new metrics data.

Expand Down Expand Up @@ -325,11 +340,21 @@ def _metrics_summary_to_lines(event_loop_metrics: EventLoopMetrics, allowed_name
f"├─ Cycles: total={summary['total_cycles']}, avg_time={summary['average_cycle_time']:.3f}s, "
f"total_time={summary['total_duration']:.3f}s"
)
yield (
f"├─ Tokens: in={summary['accumulated_usage']['inputTokens']}, "
f"out={summary['accumulated_usage']['outputTokens']}, "
f"total={summary['accumulated_usage']['totalTokens']}"
)

# Build token display with optional cached tokens
token_parts = [
f"in={summary['accumulated_usage']['inputTokens']}",
f"out={summary['accumulated_usage']['outputTokens']}",
f"total={summary['accumulated_usage']['totalTokens']}",
]

# Add cached token info if present
if summary["accumulated_usage"].get("cacheReadInputTokens"):
token_parts.append(f"cache_read={summary['accumulated_usage']['cacheReadInputTokens']}")
if summary["accumulated_usage"].get("cacheWriteInputTokens"):
token_parts.append(f"cache_write={summary['accumulated_usage']['cacheWriteInputTokens']}")

yield f"├─ Tokens: {', '.join(token_parts)}"
yield f"├─ Bedrock Latency: {summary['accumulated_metrics']['latencyMs']}ms"

yield "├─ Tool Usage:"
Expand Down Expand Up @@ -421,6 +446,8 @@ class MetricsClient:
event_loop_latency: Histogram
event_loop_input_tokens: Histogram
event_loop_output_tokens: Histogram
event_loop_cache_read_input_tokens: Histogram
event_loop_cache_write_input_tokens: Histogram

tool_call_count: Counter
tool_success_count: Counter
Expand Down Expand Up @@ -474,3 +501,9 @@ def create_instruments(self) -> None:
self.event_loop_output_tokens = self.meter.create_histogram(
name=constants.STRANDS_EVENT_LOOP_OUTPUT_TOKENS, unit="token"
)
self.event_loop_cache_read_input_tokens = self.meter.create_histogram(
name=constants.STRANDS_EVENT_LOOP_CACHE_READ_INPUT_TOKENS, unit="token"
)
self.event_loop_cache_write_input_tokens = self.meter.create_histogram(
name=constants.STRANDS_EVENT_LOOP_CACHE_WRITE_INPUT_TOKENS, unit="token"
)
2 changes: 2 additions & 0 deletions src/strands/telemetry/metrics_constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,5 @@
STRANDS_EVENT_LOOP_CYCLE_DURATION = "strands.event_loop.cycle_duration"
STRANDS_EVENT_LOOP_INPUT_TOKENS = "strands.event_loop.input.tokens"
STRANDS_EVENT_LOOP_OUTPUT_TOKENS = "strands.event_loop.output.tokens"
STRANDS_EVENT_LOOP_CACHE_READ_INPUT_TOKENS = "strands.event_loop.cache_read.input.tokens"
STRANDS_EVENT_LOOP_CACHE_WRITE_INPUT_TOKENS = "strands.event_loop.cache_write.input.tokens"
16 changes: 10 additions & 6 deletions src/strands/types/event_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,21 +2,25 @@

from typing import Literal

from typing_extensions import TypedDict
from typing_extensions import Required, TypedDict


class Usage(TypedDict):
class Usage(TypedDict, total=False):
"""Token usage information for model interactions.

Attributes:
inputTokens: Number of tokens sent in the request to the model..
inputTokens: Number of tokens sent in the request to the model.
outputTokens: Number of tokens that the model generated for the request.
totalTokens: Total number of tokens (input + output).
cacheReadInputTokens: Number of tokens read from cache (optional).
cacheWriteInputTokens: Number of tokens written to cache (optional).
"""

inputTokens: int
outputTokens: int
totalTokens: int
inputTokens: Required[int]
outputTokens: Required[int]
totalTokens: Required[int]
cacheReadInputTokens: int
cacheWriteInputTokens: int


class Metrics(TypedDict):
Expand Down
12 changes: 12 additions & 0 deletions tests/strands/event_loop/test_streaming.py
Original file line number Diff line number Diff line change
Expand Up @@ -260,6 +260,18 @@ def test_extract_usage_metrics():
assert tru_usage == exp_usage and tru_metrics == exp_metrics


def test_extract_usage_metrics_with_cache_tokens():
event = {
"usage": {"inputTokens": 0, "outputTokens": 0, "totalTokens": 0, "cacheReadInputTokens": 0},
"metrics": {"latencyMs": 0},
}

tru_usage, tru_metrics = strands.event_loop.streaming.extract_usage_metrics(event)
exp_usage, exp_metrics = event["usage"], event["metrics"]

assert tru_usage == exp_usage and tru_metrics == exp_metrics


@pytest.mark.parametrize(
("response", "exp_events"),
[
Expand Down
8 changes: 3 additions & 5 deletions tests/strands/telemetry/test_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def usage(request):
"inputTokens": 1,
"outputTokens": 2,
"totalTokens": 3,
"cacheWriteInputTokens": 10,
}
if hasattr(request, "param"):
params.update(request.param)
Expand Down Expand Up @@ -315,17 +316,14 @@ def test_event_loop_metrics_update_usage(usage, event_loop_metrics, mock_get_met
event_loop_metrics.update_usage(usage)

tru_usage = event_loop_metrics.accumulated_usage
exp_usage = Usage(
inputTokens=3,
outputTokens=6,
totalTokens=9,
)
exp_usage = Usage(inputTokens=3, outputTokens=6, totalTokens=9, cacheWriteInputTokens=30)

assert tru_usage == exp_usage
mock_get_meter_provider.return_value.get_meter.assert_called()
metrics_client = event_loop_metrics._metrics_client
metrics_client.event_loop_input_tokens.record.assert_called()
metrics_client.event_loop_output_tokens.record.assert_called()
metrics_client.event_loop_cache_write_input_tokens.record.assert_called()


def test_event_loop_metrics_update_metrics(metrics, event_loop_metrics, mock_get_meter_provider):
Expand Down
Loading